Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Water Structure and Science, References 301 - 400


  1. M. Bühl and A. Hirsch, Spherical aromaticity of fullerenes, Chemical Reviews, 101 (2001) 1153-1183. [Back]
  2. N. O. Mchedlov-Petrossyan, V. K. Klochkov, G. V. Andrievsky and A. A. Ishchenko, Interaction between colloidal particles of C60 hydrosol and cationic dyes, Chemical Physics Letters, 341 (2001) 237-244. [Back]
  3. G. V. Andrievsky, M. V. Kosevich, O. M. Vovk, V. S. Shelkovsky and L. A. Vashchenko, On the production of an aqueous colloidal solution of fullerenes, Journal of Chemical Soicety Chemical Communications, 12 (1995) 1281-1282. G. V. Andrievsky, V. K. Klochkov, A. Bordyuh and G. I. Dovbeshko, Comparative analysis of two aqueous-colloidal solutions of C60 fullerene with help of FTIR reflectance and UV-Vis spectroscopy, Chemical Physics Letters, 364 (2002) 8-17; S. M. Andreev, D. D. Purgina, E. N. Bashkatova, A. V. Garshev, A. V. Maerle and M. R. Khaitov, Facile preparation of aqueous fullerene C60 nanodispersions, Nanotechnologies in Russia, 9 (2014) 369-379 first published in Rossiiskie Nanotekhnologii, 9 (2014). [Back]
  4. H. D. B. Jenkins and Y. Marcus, Viscosity B-coefficients of ions in solution, Chemical Reviews, 95 (1995) 2695-2724; Y. Marcus, The effect of complex anions on the structure of water, Journal of Solution Chemistry, 44 (2015) 2258–2265. [Back, 2]
  5. M. V. Korobov, E. B. Stukalin, N. I. Ivanova, N. V. Avramenko and G. V. Andrievsky, DSC study of C60 - water system : unexpected peaks. In: The exciting world of nanocages and nanotubes, P. V. Kamat, D. M. Guldi, and K. M. Kadish, Eds, Fullerenes 12 (2002) 799-814, The Electrochemical Society Inc., Pennington, NJ, USA. [Back]
  6. J. Havel and E. Högfeldt, Evaluation of water sorption equilibrium data on Dowex ion exchanger using WSLET-MINUIT program, Scripta Fac. Science Nat. Univ. Masaryk. Brun. 25 (1995) Chemistry, 73-84. [Back]
  7. Hi. Uedaira and Ha. Uedaira, Role of hydration of polyhydroxy compounds in biological systems, Cellular and Molecular Biology, 47 (2001) 823-829. [Back, 2]
  8. L. M. Crowe, Lessons from nature: the role of sugars in anhydrobiosis, Comp. Biochem. Physiol. A 131 (2002) 505-513. [Back]
  9. E. Dickinson, Hydrocolloids at interfaces and the influence on the properties of dispersed systems, Food hydrocolloids 17 (2003) 25-39. [Back, 2, 3]
  10. A. H. Harvey, J. S. Gallagher and J. M. H. Levelt-Sengers, Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density, Journal of Physical Chemistry Reference Data, 27 (1998) 761-774. [Back, 2]
  11. R. Schmid, Recent advances in the description of the structure of water, the hydrophobic effect, and the like-dissolves-like rule, Monatsh. Chem. 132 (2001) 1295-1326. T. M. Truskett and K. A. Dill, Predicting water's phase diagram and liquid-state anomalies, Journal of Chemical Physics, 117 (2002) 5101-5104. [Back]
  12. Gyan Johari, Erwin Mayer, Andreas Hallbrucker and Thomas Loerting all propose that the glass transition point of water is 136 K. (a) G. P. Johari, G. Astl and E. Mayer, Enthalpy relaxation of glassy water, Journal of Chemical Physics, 92 (1990) 809-810. (b) G. P. Johari, Calorimetric features of high-enthalpy amorphous solids and glass-softening temperature of water, Journal of Physical Chemistry B 107 (2003) 9063-9070. (c) G. P. Johari, State of water at 136 K determined by its relaxation time Physical Chemistry Chemical Physics, 7 (2005) 1091-1095. (d) I. Kohl, L. Bachmann, E. Mayer, A. Hallbrucker and T. Loerting, Water behaviour: Glass transition in hyperquenched water?, Nature, 435 (2005) E1. (e) I. Kohl, L. Bachmann, A. Hallbrucker, E. Mayer, and T. Loerting, Liquid-like relaxation in hyperquenched water at <= 140 K, Physical Chemistry Chemical Physics, 7 (2005) 3210-3220 [Back]. However Austen Angell proposed 165 K (f) V. Velikov, S. Borick, C. A. Angell, The glass transition of water, based on hyperquenching experiments, Science, 294 (2001) 2335-2338. (g) D. D. Klug, Glassy water, Science, 294 (2001) 2305-2306, (h) C. A. Angell, Amorphous water, Annual Reviews of Physical Chemistry 55 (2004) 559-583. (i) Y. Yue and C. A. Angell, Clarifying the glass-transition behaviour of water by comparison with hyperquenched inorganic glasses, Nature, 427 (2004) 717 - 720. (j) Y. Yue and C. A. Angell, Water behaviour: Glass transition in hyperquenched water? (reply), Nature, 435 (2005) E1-E2. The dispute may not be over, see (k) P. Earis, The mysterious nature of water, Chemistry World, 2(4) (2005) 23. But 136 K appears most likely (S. Capaccioli and K. L. Ngai, Resolving the controversy on the glass transition temperature of water? J Chem Phys. 135(2011) 104504), see also [1005] and [1200]. Angell reconciles the different views: (l) C. A. Angell, Insights into phases of liquid water from study of its unusual glass-forming properties, Science, 319 (2008) 582-587, However, Jan Swenson and José Teixeira propose ≈ 228 K, (m) J. Swenson and J. Teixeira, The glass transition and relaxation behavior of bulk water and a possible relation to confined water, Journal of Chemical Physics,132 (2010) 014508, and McCartneyand Sadtchenko, propose ≈ 205 K using extrapolation from concentrated solutions of organic solutes, (n) S. A. McCartney and V. Sadtchenko, Fast scanning calorimetry studies of the glass transition in doped amorphous solid water: Evidence for the existence of a unique vicinal phase, Journal of Chemical Physics,138 (2013) 084501. (see also [2048]) [Back, 2]
  13. Alginate junction zone structure optimized using Hyperchem (Hypercube, Inc) and the AMBER-96 force field using the C0 parameters for calcium adapted from J. Aqvist, Ion water interaction potentials derived from free-energy perturbation simulations Journal of Physical Chemistry 94 (1990) 8021-8024 (distance dependent dielectric and (0.5) scaled van der Waals and electrostatic interaction); similar results are given using the AMBERS force field.  [Back]
  14. F. David, V. Vokhmin and G. Ionova, Water characteristics depend on the ionic environment. Thermodynamics and modelisation of the aquo ions. Journal of Molecular Liquids, 90 (2001) 45-62. [Back]
  15. A. J. Rowe, Probing hydration and the stability of protein solutions - a colloid science approach, Biophysical Chemistry, 93 (2001) 93-101. [Back]
  16. M. Masamura, Ab initio study of the structure of CH3COO in aqueous solution, Journal of Molecular Structure, (Theochem) 466 (1999) 85-93. [Back]
  17. H. Muta, M. Miwa and M. Satoh, Ion-specific swelling of hydrophilic polymer gels, Polymer 42 (2001) 6313-6316. H. Muta, S. Kawauchi and M. Satoh, Ion effects on hydrogen-bonding hydration of polymer an approach by 'induced force model', Journal of Molecular Structure, (Theochem) 620 (2003) 65-76. [Back]
  18. T. V. Chalikian, Structural thermodynamics of hydration, Journal of Physical Chemistry B 105 (2001) 12566-12578. [Back, 2]
  19. D. A. Ledward, Gelation of gelatin, in Functional properties of food macromolecules, ed. J. R. Mitchell and D. A. Ledward (Elsevier Applied Science, Publishers Ltd, 1986) pp171-201.  [Back]
  20. G. M. Mrevlishvili, Low-temperature heat capacity of biomacromolecules and the entropic cost of bound water in proteins and nucleic acids (DNA), Thermochim. Acta 308 (1998) 49-54. [Back]
  21. A. E. Oliver, D. K. Hincha and J. H. Crowe, Looking beyond sugars: the role of amphiphilic solutes in preventing adventitious reactions in anhydrobiotes at low water contents, Comp. Biochem. Physiol. A 131 (2002) 515-525. [Back]
  22. P. J. H. Daas, H. A Schols and  H. H. J. de Jongh, On the galactosyl distribution of commercial galactomannans, Carbohydate Research, 329 (2000) 609-619. [Back, 2]
  23. G. H. Peslherbe. B. M. Ladanyi and J. T. Hynes, Structure of NaI ion pairs in water clusters, Chemical Physics, 258 (2000) 201-224. [Back]
  24. C. Simmerling, T. Fox and P. A. Kollman, Use of locally enhanced sampling in free energy calculations: Testing and application to the alpha -> beta anomerization of glucose, Journal of the American Chemical Society, 120 (1998) 5771-5782. [Back]
  25. T. Steiner, Hydrogen bonds from water molecules to aromatic acceptors in very high-resolution protein crystal structures, Biophysical Chemistry, 95 (2002) 195-201. [Back] [Back to Top to top of page]
  26. M-C. Ralet, V. Dronnet, H. C. Buchholt and J.F Thibault, Enzymatically and chemically de-esterified lime pectins: characterisation, polyelectrolyte behaviour and calcium binding properties, Carbohydate Research, 336 (2001) 117-125. [Back]
  27. F. Sussich, C. Skopec, J. Brady and A. Cesàro, Reversible dehydration of trehalose and anhydrobiosis: from solution state to an exotic crystal? Carbohydate Research, 334 (2001) 165-176. F. Sussich, C. Skopec, J. Brady and A. Cesàro Corrigendum to "Reversible dehydration of trehalose and anhydrobiosis: from solution state to an exotic crystal?" Carbohydrate Research, 338 (2003) 1259. [Back]
  28. S. Pérez, K. Mazeau and C. Hervé du Penhoat, The three-dimensional structures of the pectic polysaccharides, Plant Physiol. Biochem. 38 (2000) 37-55. [Back]
  29. J. Higo, M. Sasai, H. Shirai, H. Nakamura and T. Kugimiya, Large vortex-like structures of dipole field in computer models of liquid water and dipole-bridge between biomolecules, Proceedings of the National Academy of Sciences, 98 (2001) 5961-5964. [Back, 2, 3]
  30. A. Buléon, P. Colonna, V. Planchot and S. Ball, Starch granules: structure and biosynthesis, International Journal of Biological Macromolecules, 23 (1998) 85-112. [Back]
  31. K. Esaki, F. Ninomiya, K. Hisaki,  T. Higasa, K. Shibata, K.Murataand S. Aibara, Effects of high voltage electric field treatment on the water activity of bread,  Biosci. Biotech. Biochem. 60 (1996) 1444-1449. [Back]
  32. M. Uudsemaa and T. Tamm, Calculations of hydrated titanium ion complexes: structure and influence of the first two coordination spheres, Chemical Physics Letters, 342 (2001) 667-672. M. Uudsemaa and T. Tamm, Calculations of hydration enthalpies of aqueous transition metal cations using two coordination shells and central ion substitution, Chemical Physics Letters, 400 (2004) 54-58. [Back]
  33. P. Stöckel, H. Vortisch, T Leisner and H. Baumgärtel, Homogeneous nucleation of supercooled liquid water in levitated microdroplets, Journal of Molecular Liquids, 96-97 (2002) 153-175. [Back]
  34. R. S. Smith, Z. Dohnálek, G. A. Kimmel, K. P. Stevenson, B. D. Kay, The self-diffusivity of amorphous solid water near 150 K, Chemical Physics, 258 (2000) 291-305. [Back, 2, 3, 4]
  35. V. Elia and M. Niccoli, New physico-chemical properties of extremely diluted aqueous solutions, Journal of Therm. Anal. Calorim. 75 (2004) 815-836. see also V. Elia, M. Marchese, M. Montanino, E. Napoli, M. Niccoli, L. Nonatelli and A. Ramaglia, Hydrohysteretic phenomena of "extremely diluted solutions" induced by mechanical treatments. A calorimetric and conductometric study at 25 °C, Journal of Solution Chemistry, 34 (2005) 947-960. [Back]
  36. V. Elia and M. Niccoli, New physico-chemical properties of water induced by mechanical treatments A calorimetric study at 25 °C, Journal of Thermal Analytical Calorimetry, 61 (2000) 527-537. [Back, 2
  37. C. C. M. Samson and W. Klopper, Ab initio calculation of proton barrier and binding energy of the (H2O)OH complex, Journal of Molecular Structure, (Theochem)  586 (2002) 201-208. [Back]
  38. Y. Hayashi, N. Shinyashiki and S. Yagihara, Dynamical structure of water around biopolymers investigated by microwave dielectric measurements using time domain reflectometry method, Journal of Non-Crystalline Solids, 305 (2002) 328-332. [Back]
  39. A. Imberty, H. Chanzy and S. Pérez, The double-helical nature of the crystalline part of A-starch, Journal of Molecular Biology, 201 (1988) 365-378. [Back, 2]
  40. V. Gupta, S. Nath and S. Chand, Role of water structure on phase separation in polyelectrolyte-polyethyleneglycol based aqueous two-phase systems, Polymer  43 (2002) 3387-3390. [Back]
  41. K. Miyata, H. Kanno, T. Niino and K. Tomizawa, Cationic and anionic effects on the homogeneous nucleation of ice in aqueous alkali halide solutions, Chemical Physics Letters, 354 (2002) 51-55. [Back]
  42. B. C. Gordalla and M. D. Zeidler, Molecular-dynamics in the system water-dimethylsulfoxide - a NMR relaxation study, Molecular Physics, 59 (1986) 817-828. [Back]
  43. U. Kaatze, R. Behrends and R. Pottel, Hydrogen network fluctuations and dielectric spectrometry of liquids, Journal of Non-Crystalline Solids, 305 (2002) 19-28. [Back, 2]
  44. K. A. T. Silverstein, A. D. J. Haymet and K. A. Dill, The strength of hydrogen bonds in liquid water and around nonpolar solutes, Journal of the American Chemical Society, 122 (2000) 8037-8041. [Back]
  45. R. Loris, U. Langhorst, S. De Vos, K. Decanniere, J. Bouckaert, D. Maes, T. R. Transue, and J. Steyaert, Conserved water molecules in a large family of microbial ribonucleases, Proteins 36 (1999) 117-134. Protein Data Bank, 1BVI [Back]
  46. (a) P. Belon, J. Cumps, M. Ennis, P. F. Mannaioni, J. Sainte-Laudy, M. Roberfroid and F. A. C. Wiegant, Inhibition of human basophil degranulation by successive histamine dilutions: Results of a European multi-centre trial, Inflamm. Research 48 Suppl. 1 (1999) S17-S18. P. Belon, J. Cumps, M. Ennis, P. F. Mannaioni, M. Robertfroid, J. Sainte-Laudy and F. A. C. Wiegant, Histamine dilutions modulate basophil activation, Inflamm. Research 53 (2004) 181-188. J. Sainte-Laudy and P. Belon, Use of four different flow cytometric protocols for the analysis of human basophil activation. Application to the study of the biological activity of high dilutions of histamine, Inflamm. Research 55, Suppl. 1 (2006) S23-S24. (b) S. J. Hirst, N. A. Hayes, J. Burridge, F. L. Pearce and J. C. Foreman, Human basophil degranulation is not triggered by very dilute antiserum against human IgE, Nature, 366 (1993) 525-527.(c) J. Burridge, A repeat of the 'Benveniste' experiment: Statistical analysis, Research Report 100, Department of Statistical Science, University College London, England. (1992). (d) J. Benveniste, B. Ducot and A. Spira, Memory of water revisited, Nature, 370 (1994) 322. (e) A. Spira, recounted in Heretic 1, Jacques Benveniste BBC2 program 15 July 1994. [Back]
  47. M. Matsumoto, S. Salto and I. Ohmine, Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing, Nature, 416 (2002) 409-413. [Back]
  48. (a) J. K. Messer, F. C. De Lucia and P. Helminger, The pure rotational spectrum of water vapor—A millimeter, submillimeter, and far infrared analysis, International Journal of Infrared and Millimeter Waves, 4, (1983) 505-539; P. F. Bernath, The spectroscopy of water vapour: Experiment, theory and applications, Physical Chemistry Chemical Physics, 4 (2002) 1501-1509; (b) J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, A. G. Császár, L. Daumont, R. R. Gamache, J. T. Hodges, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, A. C. Vandaele and N. F. Zobov, A database of water transitions from experiment and theory (IUPAC Technical Report), Pure and Applied Chemistry, 86 (2014) 71-83; J. Tennyson, P. F. Bernath, L. R. Brown, A. Campargue, M. R. Carleer, A. G. Császár, R. R. Gamache, J. T. Hodges, A. Jenouvrier, O. V. Naumenko, O. L. Polyansky, L. S. Rothman, R. A. Toth, A. C. Vandaele, N. F. Zobov, L. Daumont, A.r Z. Fazliev, T. Furtenbacher, I. E. Gordon, S. N. Mikhailenko and S. V. Shirin, IUPAC critical evaluation of the rotational-vibrational spectra of water vapor, Part I. Energy levels and transition wavenumbers for H217O and H218O, Journal of Quantitative Spectroscopy & Radiative Transfer, 110 (2009) 573-596. [Back]
  49. R. Corfield, Close encounters with crystalline gas, Chemistry in Britain 38 (2002) 22-25. [Back]
  50. O. V. Boyarkin, M. A. Koshelev, O. Aseev, P. Maksyutenko, T. R. Rizzo, N. F. Zobov, L. Lodi, J. Tennyson and O. L. Polyansky, Accurate bond dissociation energy of water determined by triple-resonance vibrational spectroscopy and ab initio calculations, Chemical Physics Letters, 568-569 (2013)14–20. [Back, 2] [Back to Top to top of page]
  51. G. H. Pollack, Is the cell a gel-and why does it matter? Jap. Journal of Physiol. 51 (2001) 649-660. [Back, 2]
  52. M. S. Cheung, A. E. Garcia and J. N. Onuchic, Protein folding mediated by solvation: water expulsion and formation of the hydrophobic core occur after the structural collapse, Proceedings of the National Academy of Sciences, 99 (2002) 685-690. [Back]
  53. A. Szkatula, M. Balanda and M. Kopec, Magnetic treatment of industrial water. Silica activation. Eur. Phy. J. AP 18 (2002) 41-49. [Back]
  54. M. Akyurt, G. Zaki and B. Habeebullah, Freezing phenomena in ice-water systems. Energy Conversion Management 43 (2002) 1773-1789. [Back]
  55. H. Hayashi, N. Watanabe, Y. Udagawa and C.-C. Kao, The complete optical spectrum of liquid water measured by inelastic x-ray scattering. Proceedings of the National Academy of Sciences, 97 (2000) 6264-6266. [Back]
  56. J. M. Williams, Thermal and nonthermal mechanisms of biological interaction of microwaves, arXiv.org Physics e-Print archive physics/0102007 (2002). [Back]
  57. G. B. Kauffman and M. T. Beck, Self-deception in science; the curious case of Giorgio Piccardi, Speculations Science Technol. 10 (1987) 113-122. [Back]
  58. L. Boulanger, Observations on variations in electrical conductivity of pure demineralized  water: modification ("activation") of conductivity by low-frequency, low level alternating electric fields, International Journal of Biometeorology 41 (1998) 137-140. [Back, 2]
  59. B. Kamb, A. Prakash and C. Knobler, Structure of ice V, Acta Crystallographica, 22 (1967) 706-715. [Back]
  60. W. F. Kuhs, J. L. Finney, C. Vettier and D. V. Bliss, Structure and hydrogen ordering in ices VI, VII and VIII by neutron powder diffraction, Journal of Chemical Physics,81 (1984) 3612-3623. [Back]
  61. J. D. Jorgensen and T. G. Worlton, Disordered structure of D2O ice VII from in situ neutron powder diffraction, J. Chemical Physics, 83 (1985) 329-333. [Back
  62. J. M. Besson, P. Pruzan, S. Klotz, G. Hamel, B. Silvi, R. J. Nelmes, J. S. Loveday, R. M. Wilson and S. Hull, Variation of interatomic distances in ice-VIII to 10 GPa, Physical Review, B 49 (1994) 12540-12550. [Back]
  63. F. De Meyer and C. Capel-Boute, Statistical analysis of Piccardi chemical tests, International Journal of Biometeorology, 31 (1987) 301-322. [Back]
  64. J. Grdadolnik and Y. Maréchal, Urea and urea-water solutions - an infrared study, Journal of Molecular Structure, 615 (2002) 177-189. [Back]
  65. H. R. Sørensen, S. Pedersen and A. S. Meyer, Characterization of solubilized arabinoxylo-oligosaccharides by MALDI-TOF MS analysis to unravel and direct enzyme catalyzed hydrolysis of insoluble wheat arabinoxylan, Enzyme and Microbial Technology, 41 (2007) 103-110. [Back]
  66. R. J. Speedy, Self-replicating structures in water, Journal of Physical Chemistry 88 (1984) 3364-3373. [Back, 2]
  67. C. A. Tischer, M. Iacomini and P. A. J. Gorin, Structure of the arabinogalactan from gum tragacanth (Astralagus gummifer), Carbohydate Research, 337 (2002) 1647-1655. [Back]
  68. L. J. Goodrum, A. Patel, J. F. Leykam and M. J. Kieliszewski, Gum arabic glycoprotein contains glycomodules of both extensin and arabinogalactan-glycoproteins, Phytochemistry 54 (2000) 99-106. D. Renard, L. Lavenant-Gourgeon, M.-C. Ralet and C. Sanchez, Acacia senegal gum: continuum of molecular species differing by their protein to sugar ratio, molecular weight, and charges, Biomacromolecules 7 (2006) 2637-2649. [Back]
  69. C. Sanchez, D. Renard, P. Robert, C. Schmitt and J. Lefebvre, Structure and rheological properties of acacia gum dispersions, Food Hydrocolloids 16 (2002) 257-267. [Back]
  70. P. A. Williams and G. O. Phillips, Gum arabic, in G. O. Phillips and P. A. Williams, Handbook of hydrocolloids, CRC Press, Cambridge, England (2000) pp. 155-168. [Back]
  71. M. E. Tuckerman, D. Marx and M. Parrinello, The nature and transport mechanism of hydrated hydroxide ions in aqueous solution, Nature, 417 (2002) 925-929. M. E. Tuckerman, A. Chandra and D. Marx, Structure and dynamics of OH (aq), Accounts of Chemical Research, 39 (2006) 151-158. [Back, 2]
  72. S. Ohsawa, T. Kawamura, N. Takamatsu and Y. Yusa, Raleigh scattering by aqueous colloidal silica as a cause for the blue color of hydrothermal water, Journal of Volcanol. Geotherm. Research 113 (2002) 49-60. [Back]
  73. S. Myneni, Y. Luo, L. Å. Näslund, M. Cavalleri, L. Ojamäe, H. Ogasawara, A. Pelmenschikov, Ph. Wernet, P. Väterlein, C. Heske, Z. Hussain, L. G. M. Pettersson and A. Nilsson, Spectroscopic probing of local hydrogen-bonding structures in liquid water, Journal of Physics: Condensed Matter, 14 (2002) L213-L219. [Back, 2]
  74. P. M. Wiggins, Water in complex environments such as living systems, Physica A 314 (2002) 485-491. [Back, 2]
  75. L. J. Michot, F. Villiéras, M. François, I. Bihannic, M. Pelletier, J-M. Cases, Water organisation at the solid-aqueous solution interface, Comptes Rendus Geoscience, 334 (2002) 611-631. [Back] [Back to Top to top of page]
  76. A. Khan, M. R. Khan, M. F. Khan and F. Khanam, A liquid water model that explains the variation of surface tension of water with temperature, Japanese Journal of Applied Physics, 40 (2001) 1467-1471. [Back]
  77. W. E. Royer Jr., A. Pardanani, Q. H. Gibson, E. S. Peterson and J.  M. Friedman, Ordered water molecules as key allosteric mediators in a cooperative dimeric hemoglobin, Proceedings of the National Academy of Sciences, 93 (1996) 14526-14531. [Back, 2]
  78. C. W. Bock, G. D. Markham, A. K. Katz and J. P. Glusker, The arrangement of first- and second-shell water molecules around metal ions: effects of charge and size, Theoretical Chemistry Accounts, 115 (2006) 100-112. [Back, 2]
  79. J. J. Dannenberg, Cooperativity in hydrogen bonded aggregates. Models for crystals and peptides, Journal of Molecular Structure, 615 (2002) 219-226. [Back]
  80. D. T. Puerta and S. M. Cohen, [(TpMe,Ph)2 Zn2(H3O2 )]ClO4 : a new H3O2 species relevant to zinc proteinases, Inorganica Chimica Acta, 337 (2002) 459-462. [Back]
  81. (a) K. N. Joshipura, S. Gangopadhyay, C. G. Limbachiya and M. Vinodkumar, Electron impact ionization of water molecules in ice and liquid phases, Journal of Phys.: Conf. Ser. 80 (2007) 012008 (b) R. G. Tonkyn, R. Wiedmann, E. R. Grant and M. G. White, Rotationally resolved photoionization of H2O, Journal of Chemical Physics,95 (1991) 7033-7040. [Back]
  82. K. Röttger, A. Endriss, J. Ihringer, S. Doyle and W. F. Kuhs, Lattice constants and thermal expansion of H2O and D2O ice Ih between 10 and 265 K, Acta Crystallographica B, 50 (1994) 644-648. [Back, 2]
  83. L. G. Dowell and A. P. Rinfret, Low-Temperature Forms of Ice as Studied by X-Ray Diffraction, Nature, 188 (1960) 1144-1148. [Back]
  84. B. Kamb B, Ice II: A proton-ordered form of ice, Acta Crystallographica, 17 (1964) 1437-1449. [Back]
  85. J. D. Londono, W. F. Kuhs and J. L. Finney, Neutron diffraction studies of ices III and IX on under-pressure and recovered samples, Journal of Chemical Physics,98 (1993) 4878-4888. [Back, 2]
  86. C. G. Salzmann, I. Kohl, T. Loerting, E. Mayer and A. Hallbrucker, Pure ices IV and XII from high-density amorphous ice, Canadian Journal of Physics, 81 (2003) 25-32. [Back]
  87. H. Engelhardt and B. Kamb, Structure of ice IV, a metastable high-pressure phase, Journal of Chemical Physics,75 (1981) 5887-5899. [Back]
  88. A. J. Leadbetter, R. C. Ward, J. W. Clark, P. A. Tucker, T. Matsuo and S. Suga, The equilibrium low-structure of ice, Journal of Chemical Physics,82 (1985) 424-428. [Back]
  89. S. J. La-Placa, W. C. Hamilton, B. Kamb and A. Prakash, On a nearly proton-ordered structure for ice IX, Journal of Chemical Physics, 58 (1973) 567-580 [Back]
  90. M. O'Keeffe, New ice outdoes related nets in smallest-ring size, Nature, 392 (1998) 879. [Back]
  91. M. Koza, H. Schober, A. Tlle, F. Fujara and T. Hansen, Formation of ice XII at different conditions, Nature, 397 (1999) 660-661. [Back]
  92. T. Head-Gordon and G. Hura, Water structure from scattering experiments and simulation, Chemical Reviews, 102 (2002) 2651-2670. [Back]
  93. H. J. Bakker and H.-K. Nienhuys, Delocalization of protons in liquid water, Science, 297 (2002) 587-590. [Back]
  94. C. A. Tulk, C. J. Benmore, J. Urquidi, D. D. Klug, J. Neuefeind, B. Tomberli and P. A. Egelstaff, Structural studies of several distinct metastable forms of amorphous ice, Science, 297 (2002) 1320-1323. C. A. Tulk, C. J. Benmore, D. D. Klug, J. Urquidi, J. Neuefeind and B. Tomberli, Response, Science, 299 (2003) 45. [Back, 2, 3]
  95. C. A. Koh, Towards a fundamental understanding of natural gas hydrates, Chemical Society Reviews, 31 (2002) 157-167. E. D. Sloan, Fundamental principles and applications of natural gas hydrates, Nature, 426 (2003) 353-359. [Back]
  96. M. Cavalleri, H. Ogasawara, L. G. M. Pettersson and A. Nilsson, The interpretation of X-ray absorption spectra of water and ice, Chemical Physics Letters, 364 (2002) 363-370. [Back]
  97. I. G. Mogilner, G. Ruderman and J. R. Grigera, Collagen stability, hydration and native state, Molecular Biology, 21 (2002) 209-213. [Back]
  98. F. Hajdu, A model of liquid water Tetragonal clusters: description and determination of parameters, Acta Chimica (Budapest), 93 (1977) 371-394. [Back]
  99. L. Otero, A. D. Molina-Garcia and P. D. Sanz, Some interrelated thermophysical properties of liquid water and ice.1. A user-friendly modeling review for high-pressure processing, Critical Reviews in Food Science and Nutrition, 42 (2002) 339-352. [Back]
  100. B.Guillot, A reappraisal of what we have learnt during three decades of computer simulations on water, Journal of Molecular Liquids, 101 (2002) 219-260. [Back] [Back to Top to top of page]




Home | Site Index | Site Map | Search | LSBU | Top


This page was established in 2001 and last updated by Martin Chaplin on 2 September, 2022

Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License