Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Water Structure and Science, References 2001 -> 2100


  1. P. Ben Ishai, E. Mamontov, J. D. Nickels and A. P. Sokolov, Influence of ions on water diffusion—A neutron scattering study, Journal of Physical Chemistry B 117 (2013) 7724-7728. [Back]
  2. S. Mondal, J. A. Martinson, S. Ghosh, R. Watson and K. Pahan, Protection of Tregs, suppression of Th1 and Th17 cells, and amelioration of experimental allergic encephalomyelitis by a physically-modified saline, PLOS ONE 7(12) (2012) e51869. [Back, 2]
  3. M. Yang and J. L. Skinner, Signatures of coherent vibrational energy transfer in IR and Raman line shapes for liquid water. Physical Chemistry Chemical Physics, 12 (2010) 982-991. [Back]
  4. C. Q. Sun, X. Zhang, J. Zhou, Y. Huang, Y. Zhou and W. Zheng, Density, elasticity, and stability anomalies of water molecules with fewer than four neighbors, Journal of Physical Chemistry Letters, 4 (2013) 2565-2570; X. Zhang, Y. Huang, Z. Ma, Y. Zhou, W. Zheng, J. Zhou and C. Q. Sun, A common supersolid skin covering both water and ice, 16 Physical Chemistry Chemical Physics, (2014) 22987-22994. [Back, 2]
  5. Y. Maruyama and Y. Harano, Does water drive protien folding? Chemical Physics Letters, 581 (2013) 85-90. [Back]
  6. V. A. Parsegian and T. Zemb, Hydration forces: Observations, explanations, expectations, questions, Curr. Opin. Colloid Interface Science 16 (2011) 618-624; D. C. Rau, B. Lee and V. A. Parsegian, Measurement of the repulsive force between polyelectrolyte molecules in ionic solution: Hydration forces between parallel DNA double helices, Proceedings of the National Academy of Sciences, 81 (1984) 2621-2625. [Back, 2]
  7. I. Janika and G. N. R. Tripathi, The nature of the superoxide radical anion in water, Journal of Chemical Physics,139 (2013) 014302. [Back, 2]
  8. Y. Shi and T. L. Beck, Length scales and interfacial potentials in ion hydration, Journal of Chemical Physics,139 (2013) 044504. [Back]
  9. H. G. Baumgärtel and H. W. Zimmermann, The structure of supercooled water and the mechanism of homogeneous nucleation of ice Ih. Zeit. Physik. Chemie 227 (2013) 955-981. [Back]
  10. T. T. Duignan, D. F. Parsons and B. W. Ninham, A continuum model of solvation energies including electrostatic, dispersion, and cavity contributions, Journal of Physical Chemistry B 117 (2013) 9421-9429. [Back]
  11. G. Garcetti, Water is Key – Photo Essay, Journal of Cleaner Production, 60 (2013) 216-224. [Back]
  12. Y. Wang, B. Zhang, Z. Gong, K. Gao, Y. Ou and J. Zhang, The effect of a static magnetic field on the hydrogen bonding in water using frictional experiments, Journal of Molecular Structure, 1052 (2013) 102-104. [Back]
  13. P. Attard, The stability of nanobubbles, European Physics Journal - Special Topics, (2013) DOI: 10.1140/epjst/e2013-01817-0. [Back, 2]
  14. S. Liu, Y. Kawagoe, Y. Makino and S. Oshita, Effects of nanobubbles on the physicochemical properties of water:
    The basis for peculiar properties of water containing nanobubbles, Chemical Engineering Science, 93 (2013) 250-256. [Back, 2]
  15. K. Ebina, K. Shi, M. Hirao, J. Hashimoto, Y. Kawato, S. Kaneshiro, T. Morimoto, K. Koizumi and H. Yoshikawa, Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice. PLoS ONE 8(6) (2013) e65339. doi:10.1371/journal.pone.0065339. [Back, 2]
  16. A. M. Kiszonas, E. P. Fuerst and C. F. Morris, Wheat arabinoxylan structure provides insight into function, Cereal Chem. 90 (2013) 387-395. [Back]
  17. R. J. Cooper, T. M. Chang and E. R. Williams, Hydrated alkali metal ions: Spectroscopic evidence for clathrates, Journal of Physical Chemistry A 117 (2013) 6571-6579. [Back]
  18. P. Karásek, L. Staviková, J. Planeta, B. Hohnová and M. Roth, Solubility of fused silica in sub- and supercritical water: estimation from a thermodynamic model, Journal of Supercritical Fluids, 83 (2013) 72-77; D. Strachan, Glass dissolution as a function of pH and its implications for understanding mechanisms and future experiments, Geochimica et Cosmochimica Acta, 219 (2017) 111-123 [Back]
  19. A. Taschin, P. Bartolini, R. Eramo, R. Righini and R. Torre, Evidence of two distinct local structures of water
    from ambient to supercooled conditions, Nature Communications, 4 (2013) 2401. [Back, 2]
  20. R. Senesi, D. Flammini, A. I. Kolesnikov, É. D. Murray, G. Galli and C. Andreani, The quantum nature of the OH stretching mode in ice and water probed by neutron scattering experiments, Journal of Chemical Physics,139 (2013) 074504. [Back]
  21. C. P. Herrero and R. Ramírez, Topological characterization of crystalline ice structures from coordination sequences, Physical Chemistry Chemical Physics, 15 (2013) 16676-16685; arXiv:1307.4611v1 [physics.chem-ph] 17 Jul 2013. [Back]
  22. T. E. Markland and B. J. Berne, Unraveling quantum mechanical effects in water using isotopic fractionation, Proceedings of the National Academy of Sciences, 109 (2013) 7988-7991, http://arxiv.org/abs/1307.7684. [Back]
  23. J. Canton, Experiments to prove that water is not incompressible, journal_cover Philosophical Transactions of the Royal Society, 52 (1761) 640-643. [Back]
  24. V. E. Chechko, V. Ya. Gotsulsky and M. P. Malomuzh, Peculiar points in the phase diagram of the water-alcohol solutions, Cond. Matter Phys. 16 (2013) 1-9. [Back]
  25. M. Ceriotti, J. Cuny, M. Parrinello and D. E. Manolopoulos, Nuclear quantum effects and hydrogen bond fluctuations in water, Proceedings of the National Academy of Sciences, 110 (2013) 15591-15596. [Back, 2, 3]  [Back to Top to top of page]
  26. A. Hassanali, F. Giberti, J. Cuny, T. D. Kühne and M. Parrinello, Proton transfer through the water gossamer, Proceedings of the National Academy of Sciences, 110 (2013) 13723-13728; E. Codorniu-Hernández and P. G. Kusalik, Probing the mechanisms of proton transfer in liquid water, Proceedings of the National Academy of Sciences, 110 (2013) 13697-13698. [Back]
  27. (a) M. Guthrie, R. Boehler, C. A. Tulk, J. J. Molaison, A. M. dos Santos, K. Li and R. J. Hemley, Neutron diffraction observations of interstitial protons in dense ice, Proceedings of the National Academy of Sciences, 110 (2013) 10552-10556; but see (b) T. Iitaka, H. Fukui, Z. Li1, N. Hiraoka and T. Irifune, Pressure-induced dissociation of water molecules in ice VII, Science Reports, 5 (2015) 12551. [Back, 2]

  28. D. Prada-Gracia, R. Shevchuk and F. Rao, The quest for self-consistency in hydrogen bond definitions, Journal of Chemical Physics,139 (2013) 084501; arXiv:1305.3060v2 [physics.chem-ph]. [Back]
  29. Y. Li, J. Li and F. Wang, Liquid–liquid transition in supercooled water suggested by microsecond simulations, Proceedings of the National Academy of Sciences, 110 (2013) 12209-12212. [Back]
  30. Y. Ni, S. M. Gruenbaum and J. L. Skinner, Slow hydrogen-bond switching dynamics at the water surface revealed by theoretical two-dimensional sum-frequency spectroscopy, Proceedings of the National Academy of Sciences, 110 (2013) 1992-1998. [Back]
  31. L.-P. Wang, T. Head-Gordon, J. W. Ponder, P. Ren, J. D. Chodera, P. K. Eastman, T. J. Martinez and V. S. Pande, Systematic improvement of a classical molecular model of water, Journal of Physical Chemistry B, 117 (2013) 9956-9972 (based on P. Ren and J. W. Ponder, Polarizable atomic multipole water model for molecular mechanics simulation, Journal of Physical Chemistry B 107 (2003) 5933-5947); M. L. Laury, L.-P. Wang, V. S. Pande, T, Head-Gordon and J. W. Ponder, Revised parameters for the AMOEBA polarizable atomic multipole water model, Journal of Physical Chemistry B, (2015) Article ASAP DOI: 10.1021/jp510896n. [Back]
  32. T. Loerting, M. Bauer, I. Kohl, K. Watschinger, K. Winkel, and E. Mayer, Cryoflotation: densities of amorphous and crystalline ices Journal of Physical Chemistry B 115 (2011) 14167-14175. [Back]
  33. N. Giovambattista, K. Amann-Winkel and T. Loerting, Amorphous ices, In: Liquid Polymorphism, Ed. H. E. Stanley: Advances in Chemical Physics, 152 (2013) 139-173. [Back]
  34. O. Shih, A. H. England, G. C. Dallinger, J. W. Smith, K. C. Duffey, R. C. Cohen, D. Prendergast and R. J. Saykally, Cation-cation contact pairing in water: Guanidinium, Journal of Chemical Physics, 139 (2013) 035104. [Back]
  35. M. Pastorczak, S. T. van der Post and H. J. Bakker, Cooperative hydration of carboxylate groups with alkali cations, Physical Chemistry Chemical Physics, 15 (2013) 17767. [Back]
  36. (a) J. M. Schurr, B. S. Fujimoto, L, Huynh and D. T. Chiu. A Theory of Macromolecular Chemotaxis, Journal of Physical Chemistry B, 117 (2013) 7626-7652; J. M. Schurr, Phenomena associated with gel-water interfaces. Analyses and alternatives to the long-range ordered water hypothesis, Journal of Physical Chemistry B. 117 (2013):7653-7674; (b) Pollack, GH. Comment on “A Theory of Macromolecular Chemotaxis” and “Phenomena Associated with Gel–Water Interfaces. Analyses and Alternatives to the Long-Range Ordered Water Hypothesis”, Journal of Physical Chemistry B. 117 (2013):7843-7846. [Back]
  37. A. Fernández, The principle of minimal episteric distortion of the water matrix and its steering role in protein folding, Journal of Chemical Physics,139 (2013) 085101. [Back]
  38. R. Senesi, G. Romanelli, M. A. Adams and C. Andreani, Temperature dependence of the zero point kinetic energy in ice and water above room temperature, Chemical Physics, 427 (2013) 106-110; A. Pietropaolo, R. Senesi, C. Andreani and J. Mayers, Quantum effects in water: proton kinetic energy maxima in stable and supercooled liquid, Brazilian Journal of Phys. 39 (2009) 318-321. [Back, 2]
  39. J. A. Kaduk and T. N. Blanton, An improved structural model for cellulose II, Powder Diffraction, 28 (2013) 194-199. [Back]
  40. R. D. Macdonald and M. Khajehpour, Effects of the osmolyte TMAO (trimethylamine-N-oxide) on aqueous hydrophobic contact-pair interactions, Biophysical Chemistry, 184 (2013) 101-107. [Back]
  41. A. A. Khamzin and R. R. Nigmatullin, Thermodynamic and magnetic properties of linear spin complexes of ortho-water molecules, Doklady Physical Chemistry, 452 (2013) 247-250 (Doklady Akad. Nauk, 452 (2013) 534-538). [Back]
  42. C. Chen, C. Huang, I. Waluyo, D. Nordlund, T.-C. Weng, D. Sokaras, T. Weiss, U. Bergmann, L. G. M. Pettersson and A. Nilsson, Solvation structures of protons and hydroxide ions in water, Journal of Chemical Physics,138 (2013) 154506. [Back, 2]
  43. Aristotle, Meteorologica 350 BC. Translated by E. W. Webster Clarendon Press, Oxford, UK. (1923). [Back]
  44. C. Q. Sun, X. Zhang, X. Fu, W. Zheng, J. Kuo, Y. Zhou, Z. Shen and J. Zhou, Density and phonon-stiffness anomalies of water and ice in the full temperature range, Journal of Physical Chemistry Letters, 4 (2013) 3238-3244. [Back]
  45. S. Osfouri, R. Azin and E. Pakdaman, Dynamics of water state in nanoconfined environment, Journal of the Taiwan Institute of Chemical Engineering, 45 (2013) 828-832; A.K. Soper, Radical re-appraisal of water structure in hydrophilic confinement, Chem.Physics Letters, 590 (2013) 1-15. [Back]
  46. M. Kondoh, Y. Ohshima and M. Tsubouchi, Ion effects on the structure of water studied by terahertz time-domain spectroscopy, Chem.Physics Letters, 591 (2014) 317-322 [Back]
  47. A. Gholaminejad and R. Hosseini, A study of water supercooling, Journal of Electronics Cooling and Thermal Control, 3 (2013) 1-6. [Back]
  48. K. Amann-Winkel, C. Gainaru, P. H. Handle, M. Seidl, H. Nelson, R. Böhmer and T. Loerting, Water’s second glass transition, Proceedings of the National Academy of Sciences, 110 (2013) 17720-17725; A. G. Smart, ”Melting” ice yields hints of a second liquid water phase, Physics Today, 66 (2013 ) 16-17; G. P. Johari, Comment on “Water’s second glass transition, K. Amann-Winkel, C. Gainaru, P. H. Handle, M. Seidl, H. Nelson, R. Böhmer, and T. Loerting, Proceedings of the National Academy of Sciences, 110 (2013) 17720.”, and the sub-Tg features of pressure-densified glasses, Thermochimica Acta, 617 (2015) 208-218; J. Stern, M. Seidl, C. Gainaru, V. Fuentes-Landete, K. Amann-Winkel, P. Handle, K. W. Köster, H. Nelson, R. Böhmer and T. Loerting, Experimental evidence for two distinct deeply supercooled liquid states of water. Response to "Comment on 'Water's second glass transition'", by G. P. Johari, Thermochimica Acta, 617 (2015) 200-207; C. U. Kim, M. W. Tate and S. M. Gruner, Glass-to-cryogenic-liquid transitions in aqueous solutions suggested by crack healing, Proceedings of the National Academy of Sciences, 112 (2015) 11765-11770. [Back, 2]
  49. P. Madl, E. Del Giudice, V. L. Voeikov, A. Tedeschi, P. Kolarž, M. Gaisberger and A. Hartl, Evidence of coherent dynamics in water droplets of waterfalls, WATER, 5 (2013) 57-68. [Back, 2]
  50. P. Hamm and J. Savolainen, Two-dimensional-Raman-terahertz spectroscopy of water: Theory, Journal of Chemical Physics, 136 (2012) 094516; J. Savolainen, S. Ahmed and P. Hamm, Two-dimensional Raman-terahertz spectroscopy of water, Proceedings of the National Academy of Sciences, 110 (2013) 20402-20407; D. Sidler and P. Hamm, Feynman diagram description of 2D-Raman-THz spectroscopy applied to water, Journal of Chemical Physics, 150 (2019) 044202. [Back, 2]  [Back to Top to top of page]
  51. F. Corsetti, E. Artacho, J. M. Soler, S. S. Alexandre and M.-V. Fernández-Serra, Room temperature compressibility and diffusivity of liquid water from first principles, Journal of Chemical Physics, 139 (2013) 194502. [Back]
  52. B. Ruscic, Active thermochemical tables: water and water dimer, Journal of Physical Chemistry A, 117 (2013) 11940-11953. [Back, 2]
  53. A. S. Bednyakov, N. F. Stepanov, and Yu. V. Novakovskaya, Large amplitude oscillations of protons in water clusters, Russian Journal of Physical Chemistry A, 88 (2014) 287-294, Zhurnal Fizicheskoi Khimii, 88 (2014) 297-305. [Back, 2]
  54. L. Chen, C. Li and Z, Ren, Variation in surface tension of water in high magnetic field, Advanced Materials Research, 750-752 (2013) 2279-2282. [Back]
  55. B. Medronho and B. Lindman, Competing forces during cellulose dissolution: from solvents to mechanisms, Current Opinion in Colloid & Interface Science, 19 (2014) 32-40. [Back]
  56. G. Pallares, M. E. M. Azouzi, M. A. Gonzalez, J. L. Aragones, J. L. F. Abascal, C. Valeriani and F. Caupin, Anomalies in bulk supercooled water at negative pressure, Proceedings of the National Academy of Sciences, 111 (2014) 7936-7941; arXiv:1311.1623v2 [cond-mat.stat-mech] 27 Nov 2013. [Back]
  57. M. F. Chaplin, Interfacial osmotic pressure, Aqua Incognita: why ice floats on water and Galileo 400 years on, Ed. P. Lo Nostro and B. W. Ninham, ISBN: 9781925138214 (Connor Court, Ballarat, 2014) pp 329-340. [Back, 2, 3]
  58. H. H. Mollenhauer and D. J. Morré, Structural compartmentation of the cytosol: zones of exclusion, zones of adhesion, cytoskeletal and intercisternal elements. In Roodyn D. B. (ed.) Subcellular Biochemistry, vol. 5 (Plenum Press, 1978) pp. 327-362; H. Yoshida, N, Ise, and T. Hashimoto, Void structure and vapor–liquid condensation in dilute deionized colloidal dispersions, Journal of Chemical Physics, 103 (1995) 10146. [Back]
  59. C.-Y. Ruan, V. A. Lobastov,  F. Vigliotti,  S. Chen and A. H. Zewail, Ultrafast electron crystallography of interfacial water, Science, 304 (2004) 80-84. [Back]
  60. K. Sadakane, H. Seto, H. Endo and M. Shibayama, A periodic structure in a mixture of D2O/3-methylpyridine /NaBPh4 induced by solvation effect, Journal of Physical Society of Japan, 76 (2007) 113602. [Back]
  61. H. Yoo, D. R. Baker, C. M. Pirie, B. Hovakeemian and G. H. Pollack, Characteristics of water adjacent to hydrophilic interfaces. In Water: the Forgotten Molecule, D. LeBihan, and H. Fukuyama (eds), (Pan Stanford, 2011) pp 123-136. [Back]
  62. D. T. Nhan and G. H. Pollack, Effect of particle diameter on exclusion-zone size, International Journal of Design & Nature and Ecodynamics, 6 (2011) 139-144. [Back]
  63. V. V. Goncharuk, A. A. Kavitskaya, I. Yu Romanyukina and O. A Loboda, Revealing water’s secrets: deuterium depleted water, Chemistry Central Journal, 7 (2013) 103. [Back, 2]
  64. V. Fernicola, L. Rosso and M. Giovannini, Investigation of the ice–water vapor equilibrium along the sublimation line, International Journal of Thermophysics, 33 (2012) 1363-1373. [Back, 2]
  65. P. Bellavite, M. Marzotto, D. Olioso, E. Moratti and A. Conforti, High-dilution effects revisited. 1. Physicochemical aspects, Homeopathy, 103 (2014) 4-21; P. Bellavite, M. Marzotto, D. Olioso, E. Moratti and A. Conforti, High-dilution effects revisited. 2. Pharmacodynamic mechanisms, Homeopathy, 103 (2014) 22-43
  66. B. Bhushan, Y. Pan and S. Daniels, AFM characterization of nanobubble formation and slip condition in oxygenated and electrokinetically altered fluids, Journal of Colloid and Interface Science, 392 (2013) 105-116. [Back]
  67. A. Ushida, T. Hasegawa, T. Narumi and T. Nakajima, Flow properties of nanobubble mixtures passing through micro-orifices, International Journal of Heat and Fluid Flow, 40 (2013) 106-115. [Back]
  68. M. Takahashi, K. Chiba and P. Li, Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus, Japan Journal of Physical Chemistry B 111 (2007) 1343-1347. [Back, 2]
  69. A. S. Biryukov, V. F. Gavrikov, L. O. Nikiforova and V. A. Shcheglov, New physical methods of disinfection of water, Journal of Russian Laser Research, 26 (2005) 13-25. [Back]
  70. S. D. Zakharov, Ortho/para spin isomers of H2O molecules as a factor responsible for formation of two structural motifs in water, Biophysics, 58 (2013) 718-722; originally Biofizika 58 (2013) 904-909. [Back]
  71. M. Seidl, K. Amann-Winkel, P. H. Handle, G. Zifferer and T. Loerting, From parallel to single crystallization kinetics in high-density amorphous ice, Physical Review B, 88 (2013) 174105. [Back]
  72. A. Angulo-Sherman and H. Mercado-Uribe, Water under inner pressure: A dielectric spectroscopy study, Physical Review E, 89 (2014) 022406. [Back]
  73. J. K. Beattie, A. M. Djerdjev, A. Gray-Weale, N. Kallay, J. Lützenkirchen, T. Preočanin and A. Selmani, pH and the surface tension of water, Journal of Colloid and Interface Science, 422 (2014) 54-57, Note that a factor of 2.3 is missing from the last term of equation 4; P. Jungwirth and D. J. Tobias, A Comment on “pH and the surface tension of water”, Journal of Colloid and Interface Science,448 (2015) 593; J. K. Beattie, A. M. Djerdjev, N. Kallay, J. Lützenkirchen and T. Preočanin, Response to Comment on “pH and the surface tension of water”,Journal of Colloid and Interface Science, 448 (2015) 594-595. [Back]
  74. J. H. Weijs, J. R. T. Seddon and D. Lohse, Diffusive shielding stabilizes bulk nanobubble clusters, ChemPhysChem, 13 (2012) 2197-2204. [Back, 2]
  75. M.-Y. Lin and L.-W. Hourng, Effects of magnetic field and pulse potential on hydrogen production via water electrolysis, International Journal of Energy Research, 38 ( 2014) 106-116; M.-Y. Lin, L.-W. Hourng and C.-H. Wu, The effectiveness of a magnetic field in increasing hydrogen production by water electrolysis, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39 (2017) 140-147; M.-Y. Lin, L.-W. Hourng and J.-S. Hsu (2017) The effects of magnetic field on the hydrogen production by multielectrode water electrolysis, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39 (2017) 352-357. [Back]  [Back to Top to top of page]
  76. S. M. Pershin, A. F. Bunkin, Temperature evolution of the relative concentration of the H2O ortho/para spin isomers in water studied by four-photon laser spectroscopy, Laser Physics, 19 (2009) 1410-1414; S. M. Pershin, Effect of quantum differences of ortho and para H2O spin-isomers on water properties: biophysical aspect, Biophysics, 58 (2013) 723-730. [Back]
  77. (a) J. Segarra-Martí, D. Roca-Sanjuán and M. Merchán, On the hexagonal ice-like model of structured water: Theoretical analysis of the low-lying excited states, Computational and Theoretical Chemistry, 1040-1041 (2014) 266-273. This hypothesis has been disproved by a paper from the same authors (b) J. Segarra-Martí, D. Roca-Sanjuán and M. Merchán, Can the hexagonal ice-like model render the spectroscopic fingerprints of structured water? Feedback from quantum-chemical computations, Entropy, 16 (2014) 4101-4120. A further related paper ignores basic chemistry, (c) K. Oehr and P. H. LeMay, The case for tetrahedral oxy-subhydride (TOSH) structures in the exclusion zones of anchored polar solvents including water, Entropy, 16 (2014) 5712-5720. [Back, 2]
  78. K. Himoto, M. Matsumoto and H. Tanaka, Yet another criticality of water, Physical Chemistry Chemical Physics, 16 (2014) 5081-5087. [Back]
  79. D. Mudgil, S. Barak and B. S. Khatkar, Guar gum: processing, properties and food applications—A review, Journal of Food Science and Technolology, 51 (2014) 409-418. [Back]
  80. P. T. Kiss and A. Baranyai, A systematic development of a polarizable potential of water, Journal of Chemical Physics,138 (2013) 204507; P. T. Kiss and A. Baranyai, Anomalous properties of water predicted by the BK3 model, Journal of Chemical Physics, 140 (2014) 154505; P. T. Kiss and A. Baranyai, A new polarizable force field for alkali and halide ions, Journal of Chemical Physics, 141 (2014) 114501. [Back]
  81. F. Mallamace, C. Corsaro, D. Mallamace, C. Vasic and H. E. Stanley, The thermodynamical response functions and the origin of the anomalous behavior of liquid water,Faraday Discussions, 167 (2013) 95-108. [Back, 2]
  82. K. C. Verma and A. S. Kushwaha, Demineralization of drinking water: Is it prudent?, Medical Journal of Armed Forces India 70 (2014) 377-379; I. Rosborg, F. Kozisek and M. Ferrante, Health effects of de-mineralization of drinking wate In, Drinking Water Minerals and Mineral Balance, (2019) pp.149-160, doi:: 10.1007/978-3-030-18034-8_7. [Back]
  83. A. Hermann, W. G. Schmidt and P. Schwerdtfeger, Resolving the optical spectrum of water: Coordination and electrostatic effects, Physical Review Letters, 100 (2008) 207403. [Back]
  84. T. Sun, F.-H. Lin, R. L. Campbell, J. S. Allingham and P. L. Davies, An antifreeze protein folds with an interior network of more than 400 semi-clathrate waters, Science, 343 (2014) 795-798. [Back]
  85. Z. Pawlak, W. Urbaniak and A. Oloyede, The relationship between friction and wettability in aqueous environment, Wear, 271 (2011) 1745-1749. [Back]
  86. L. F. Roncaratti, D. Cappelletti and F. Pirani, The spontaneous synchronized dance of pairs of water molecules, Journal of Chemical Physics, 140 (2014) 124318. [Back]
  87. M. Suzuki, What is “hypermobile” water?: detected in alkali halide, adenosine phosphate, and F-actin solutions by high resolution microwave dielectric spectroscopy, Pure and Applied Chemistry, 86 (2014) 181-189. [Back]
  88. U. Buck, C. C. Pradzynski, T. Zeuch, J. M. Dieterich and B. Hartke, A size resolved investigation of large water clusters, Physical Chemistry Chemical Physics, 16 (2014) 6859-6871. [Back]
  89. V. Holten, J. V. Sengers, and M. A. Anisimov, Equation of state for supercooled water at pressures up to 400 MPa, Journal of Physical Chemistry Reference Data, 43 (2014) 043101; arXiv:1403.6777v1 [cond-mat.stat-mech] 26 Mar 2014; International Association for the Properties of Water and Steam guideline on thermodynamic properties of supercooled water (The International Association for the Properties of Water and Steam, Stockholm), Technical Reports of the IAPWS, (2015) G12-15.. [Back, 2, 3, 4]
  90. Z. Steinczinger and L. Pusztai, Comparison of the TIP4P-2005, SWM4-DP and BK3 interaction potentials of liquid water with respect to their consistency with neutron and X-ray diffraction data of pure water, Condensed Matter Physics, 16 (2013) 43604: arXiv:1312.4557v1 [cond-mat.soft] 16 Dec 2013; Z. Steinczinger, P. Jóvári, L. Pusztai, Comparison of 9 classical interaction potentials of liquid water: Simultaneous Reverse Monte Carlo modeling of X-ray and neutron diffraction results and partial radial distribution functions from computer simulations, Journal of Molecular Liquids, 228 (2017) 19-24. [Back]
  91. P. Jungwirth and P. S. Cremer, Beyond Hofmeister, Nature Chemistry, 6 (2014) 261-263. [Back]
  92. S. Dolnicar, A. Hurlimann and B. Grün, Branding water, Water Research, 57 (2014) 325-338. [Back]
  93. S. K. Seth, Discrete cubic water cluster: An unusual building block of 3D supramolecular network, Inorganic Chemistry Communications, 43 (2014) 60-63. [Back]
  94. M. J. Down, J. Tennyson, M. Hara, Y. Hatano and K. Kobayashi, Analysis of a tritium enhanced water spectrum between 720 and 7245 cm−1 using new variational calculations, Journal of Molecular Spectroscopy, 289 (2013) 35-40. [Back]
  95. T. D. Kühne and R. Z. Khaliullin, Nature, of the asymmetry in the hydrogen-bond networks of hexagonal ice and liquid water, Journal of the American Chemical Society, 136 (2014) 3395-3399. [Back, 2]
  96. T. Kimura, Y. Kuwayama and T. Yagi, Melting temperatures of H2O up to 72 GPa measured in a diamond anvil cell using CO2 laser heating technique, Journal of Chemical Physics, 140 (2014) 074501. [Back, 2]
  97. E. Blackwelder, The hardness of ice, American Journal of Science ence, 238 (194O) 61-62. [Back, 2]
  98. I. I. Geru, Water structure, quantum nature of hydrogen bonds and diffusion of water molecules in chloride aqueous solutions, in Management of water quality in Moldova, Water Science, and Technology Library Vol. 69, Ed. G. Duca, (Springer, Switzerland, 2014) pp 21-34. [Back]
  99. S. Fanetti, A. Lapini, M. Pagliai, M. Citroni, M. Di Donato, S. Scandolo, R. Righini and R. Bini, Structure and dynamics of low-density and high-density liquid water at hgh pressure, Journal of Physical Chemistry Letters, 5 (2014) 235-240. [Back]
  100. E. M. Kramer and D. R. Myers Five popular misconceptions about osmosis, American Journal of Physics, 80 (2012) 694-699 [Back]  [Back to Top to top of page]



Home | Site Index | Site Map | Search | LSBU | Top


This page was established in 2013 and last updated by Martin Chaplin on 15 September, 2021

Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License