Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Water Structure and Science, References 901 - 1000

 

  1. K. H. Tsai and T.-M. Wu, Local structural effects on low-frequency vibrational spectrum of
    liquid water: The instantaneous-normal-mode analysis, Chemical Physics Letters, 417 (2005) 390-395. [Back]
  2. R. Mota, R. Parafita, A. Giuliani, M.-J. Hubin-Franskin, J. M. C. Lourenço, G. Garcia, S. V. Hoffmann, N. J. Mason, P. A. Ribeiro, M. Raposo and P. Limão-Vieira, Water VUV electronic state spectroscopy by synchrotron radiation, Chemical Physics Letters, 416 (2005) 152-159. [Back]
  3. (a) T. Imai and F. Hirata, Hydrophobic effects on partial molar volume, Journal of Chemical Physics,122 (2005) 094509. (b) G. Graziano, Comment on "Hydrophobic effects on partial molar volume", Journal of Chemical Physics,123 (2005) 167103. (c) T. Imai and F. Hirata, Reply to "Comment on 'Hydrophobic effects on partial molar volume'", Journal of Chemical Physics,123 (2005) 167104. [Back]
  4. S. Gao, W. House and W. G. Chapman, NMR/MRI study of clathrate hydrate mechanisms, Journal of Phys. Chem. B 109 (2005) 19090-19093. [Back]
  5. J. F. Matthews, C. E. Skopec, P. E. Mason, P. Zuccato, R. W. Torget, J. Sugiyama, M. E. Himmel and J. W. Brady, Computer simulation studies of microcrystalline cellulose Iß, Carbohydate Research, 341 (2005) 138-152. [Back]
  6. D. M. Murphy and T. Koop, Review of the vapour pressures of ice and supercooled water for
    atmospheric applications, Q. J. R. Meteorol. Soc. 131 (2005) 1539-1565. [Back, 2, 3]
  7. F. Garczarek and K. Gerwert, Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy, Nature, 439 (2005) 109-112. [Back]
  8. J. Lin, I. A. Balabin and D. N. Beratan, The nature of aqueous tunneling pathways between electron-transfer proteins, Science, 310 (2005) 1311-1313. A. de la Lande, N. S. Babcock, J. Řezáč, B. C. Sanders and D. R. Salahub, Surface residues dynamically organize water bridges to enhance electron transfer between proteins
    Proceedings of the National Academy of Sciences, 107 (2010) 11799-11804, arxiv.org. C. F. A. Negre, G. E. Jara, D. M. A. Vera, A. B. Pierini and C. G. Sánchez, Detailed analysis of water structure in a solvent mediated electron tunneling mechanism,Journal of Physics: Condensed Matter, 23 (2011) 245305. [Back]
  9. B. Czarnik-Matusewicz and S. Pilorz, Study of the temperature-dependent near-infrared spectra of water by two-dimensional correlation spectroscopy and principal components analysis, Vibrational Spectrosc. 40 (2005) 235-245. [Back]
  10. C. Knight and S. J. Singer, Prediction of a phase transition to a hydrogen bond ordered form of ice VI, Journal of Physical Chemistry B 109 (2005), 21040-21046. [Back]
  11. D. Ben-Amotz, Global thermodynamics of hydrophobic cavitation, dewetting and hydration, Journal of Chemical Physics, 123 (2005) 184504. [Back]
  12. H. Choe, M.-H. Hong, Y. Seo, K. Lee, G. Kim, Y. Cho, J. Ihm and W. Jhe, Formation, manipulation, and elasticity measurement of a nanometric nolumn of water molecules,Physical Review Letters 95 (2005) 187801. [Back]
  13. L. Cruzeiro, Why are proteins with glutamine- and asparagine-rich regions associated with protein misfolding diseases?Journal of Physics: Condensed Matter, 17 (2005) 7833-7844. [Back]
  14. R. A. Shaw, A. J. Durant and Y. Mi, Heterogeneous surface crystallization observed in undercooled water, Journal of Physical Chemistry B 109 (2005) 9865-9868. [Back, 2]
  15. E. Sabadini, T. Cosgrovea and F. do Carmo Egídio, Solubility of cyclomaltooligosaccharides (cyclodextrins) in H2O and D2O: a comparative study, Carbohydate Research, 341 (2006) 270-274. [Back]
  16. H. E. Fischer, A. C. Barnes and P. S. Salmon, Neutron and x-ray diffraction studies of liquids and glasses, Rep. Prog. Phys. 69 (2006) 233-299. [Back]
  17. E. Herbert and F. Caupin, The limit of metastability of water under tension: theories and experiments, Journal of Physics: Condensed Matter, 17 (2005) S3597-S3602. [Back]
  18. W. Saenger, J. Jacob, K. Gessler, T. Steiner, D. Hoffmann, H. Sanbe, K. Koizumi, S. M. Smith and T Takaha, Structures of the common cyclodextrins and their larger analogues - Beyond the doughnut, Chemical Reviews, 98 (1998) 1787-1802. [Back]
  19. A. R. Hedges, Industrial applications of cyclodextrins, Chemical Reviews, 98 (1998) 2035-2044. [Back]
  20. K. Mazeau, C. Moine, P. Krausz and V. Gloaguen, Conformational analysis of xylan chains, Carbohydrate Research 340 (2005) 2752-2760. [Back]
  21. G. Venktaramana, E. Rajagopal, N. Manohara Murthy, Studies on the effect of chlorides of magnesium, calcium, strontium and barium on the temperature of the sound velocity maximum of water, Journal of Molecular Liquids, 123 (2006) 68-71. [Back, 2]
  22. D. Xenides, B. R. Randolf and B. M. Rode, hydrogen bonding in liquid water: An ab initio QM/MM MD simulation study, Journal of Molecular Liquids, 123 (2006) 61-67. [Back, 2]
  23. U. Peters, R. Sinha, N. Chatterjee, A. F. Subar, R. G. Ziegler, M. Kulldorff, R. Bresalier, J. L. Weissfeld, A. Flood, A. Schatzkin and R. B Hayes, Dietary fibre and colorectal adenoma in a colorectal cancer early detection programme, The Lancet, 361 (2003) 1491-1495. [Back]
  24. S. A. Bingham, N. E. Day, R. Luben, P. Ferrari, N. Slimani, T. Norat, F. Clavel-Chapelon, E. Kesse, A. Nieters, H. Boeing, A. Tjønneland, K. Overvad, C. Martinez, M. Dorronsoro, C. A. Gonzalez, T. J. Key, A. Trichopoulou, A. Naska, P. Vineis, R. Tumino, V. Krogh, H. B. Bueno-de-Mesquita, P. H. M. Peeters, G. Berglund, G. Hallmans, E. Lund, G. Skeie, R. Kaaks and E. Riboli, Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study, The Lancet, 361 (2003) 1496-1501. [Back]
  25. Y. Park, D. J. Hunter, D. Spiegelman, L. Bergkvist, F. Berrino, P. A. van den Brandt, J. E. Buring, G. A. Colditz, J. L. Freudenheim, C. S. Fuchs, E. Giovannucci, R. A. Goldbohm, S. Graham, L. Harnack, A. M. Hartman, D. R. Jacobs, I. Kato, V. Krogh, M. F. Leitzmann, M. L. McCullough, A. B. Miller, P. Pietinen, T. E. Rohan, A. Schatzkin, W. C. Willett, A. Wolk, A. Zeleniuch-Jacquotte, S. M. Zhang and S. A. Smith-Warne, Dietary fiber intake and risk of colorectal cancer A pooled analysis of prospective cohort studies, J. American Med. Assoc. 294 (2005) 2849-2857. [Back] [Back to Top to top of page]
  26. P. K. Grover and R. L. Ryall, Critical appraisal of salting-out and its implications for chemical and biological sciences, Chemical Reviews, 105 (2005) 1-10 [Back]
  27. C. Cardella, L. De Magistris, E. Florio and C. W. Smith, Permanent changes in the physico-chemical properties of water following exposure to resonant circuits, J. Scientific Exploration 15 (2001) 501-518. [Back]
  28. (a) B. C. Garrett, Ions at the air/water interface, Science, 303 (2004) 1146-1147. (b) E. M. Knipping, M. J. Lakin, K. L. Foster, P. Jungwirth, D. J. Tobias, R. B. Gerber, D. Dabdub, B. J. Finlayson-Pitts, Experiments and simulations of ion-enhanced interfacial chemistry on aqueous NaCl aerosols, Science, 288 (2000) 301-306. [Back, 2, 3]
  29. M. Starzak and M. Mathlouthi, Temperature dependence of water activity in aqueous solutions of sucrose, Food Chemistry, 96 (2006) 346-370. [Back]
  30. S. Pal, P. K. Maiti and B. Bagchi, Anisotropic and sub-diffusive water motion at the surface of DNA and of an anionic micelle CsPFO, Journal of Physics: Condensed Matter, 17 (2005) S4317-S4331. [Back]
  31. N. Naguib, H. Ye, Y. Gogotsi, A. G. Yazicioglu, C. M. Megaridis and M. Yoshimura, Observation of water confined in nanometer channels of closed carbon nanotubes, Nano Letters, 4 (2004) 2237 -2243. [Back]
  32. C. G. Salzmann, E. Mayer and A. Hallbrucker, Effect of heating rate and pressure on the crystallization kinetics of high-density amorphous ice on isobaric heating between 0.2 and 1.9 GPa, Physical Chemistry Chemical Physics, 6 (2004) 5156-5165. [Back]
  33. G. Lamoureux, E. Harder, I. V. Vorobyov, B. Roux and A. D. MacKerell Jr, A polarizable model of water for molecular dynamics simulations of biomolecules, Chemical Physics Letters, 418 (2005) 241-245. [Back]
  34. CODATA Internationally recommended 2018 values of the Fundamental Physical Constants; W. Bich, The third-millennium International System of Units, Rivista del Nuovo Cimento, 42 (2019) 49-102; DOI: 10.1393/ncr/i2019-10156-2. [Back]
  35. C. G.Salzmann, T. Loerting, S. Klotz, P. W.Mirwald, A. Hallbrucker and E. Mayer, Isobaric annealing of high-density amorphous ice between 0.3 and 1.9 GPa:in situ density values and structural changes, Physical Chemistry Chemical Physics, 8 (2006) 386-397. [Back, 2]
  36. L. Helm, G. M. Nicolle and A. E. Merbach, Water and proton exchange processes on metal ions, Advances in Inorganic Chemistry 57 (2005) 327-379. [Back]
  37. B. F. Henson, L. F. Voss, K. R. Wilson and J. M. Robinson, Thermodynamic model of quasiliquid formation on H2O ice: Comparison with experiment J. Chemical Physics, 123 (2005) 144707. [Back]
  38. R. M. Santilli, A new gaseous and combustible form of water, International Journal of Hydrogen Energy, 31 (2006) 1113-1128. (b) J. J. M. Calo, Comments on “A new gaseous and combustible form of water,” by R.M. Santilli. Int J Hydrogen Energy (2006), Int J Hydrogen Energy 32 (2007) 1309-1312. (c) M. O. Cloonan, A chemist’s view of J.M. Calo’s comments on: ‘‘A new gaseous and combustible form of water’’ by R.M. Santilli (International Journal of Hydrogen Energy, 2006:31(9), 1113–1128), Int J Hydrogen Energy 33 (2008) 922-926. [Back]
  39. M. Roeselová, J. Vieceli, L. X. Dang, B. C. Garrett, and D. J. Tobias, Hydroxyl radical at the air-water interface, Journal of the American Chemical Society, 126 (2004), 16308 -16309. [Back, 2, 3]
  40. J. Urquidi, C. J. Benmore, J. Neuefeind, B. Tomberli, C. A. Tulk, M. Guthrie, P. A. Egelstaff and D. D. Klug, Isotopic quantum effects on the structure of low density amorphous ice,Journal of Physics: Condensed Matter, 15 (2003) 3657-3664. [Back]
  41. V. Aquilanti, E. Cornicchi, M. M. Teixidor, N. Saendig, F. Pirani, D. Cappelletti, Glory-scattering measurement of water-noble-gas interactions: The birth of the hydrogen bond, Angewandte Chemie International Edition, 44 (2005) 2356-2360. [Back]
  42. J.-J. Max and C. Chapados, Isotope effects in liquid water by infrared spectroscopy. III. H2O and D2O
    spectra from 6000 to 0 cm−1, Journal of Chemical Physics,131 (2009) 184505. see earlier papers in [1502] [Back, 2]
  43. J. VandeVondele and M. Sprik, A molecular dynamics study of the hydroxyl radical in solution applying self-interaction-corrected density functional methods, Phys. Chem. Chemical Physics, 7 (2005) 1363-1367. [Back]
  44. Á. Buvári-Barcza, J. Rohonczy, N. Rozlosnik, T. Gilányi, B. Szabó, G. Lovas, T. Braun, J. Samu and L. Barcza, Aqueous solubilization of [60]fullerene via inclusion complex formation and the hydration of C60, Journal of Chem. Soc., Perkin Trans. 2 (2001) 191-196. [Back, 2]
  45. N. Kometani, K. Takemiya, Y. Yonezawa, F. Amita and O. Kajimoto, UV spectral shift of benzene in sub- and supercritical water, Chemical Physics Letters, 394 (2004) 85-89. [Back]
  46. (a) D. Vukicevic, M. Randic, On Kekulé structures of buckminsterfullerene, Chemical Physics Letters, 401 (2005) 446-450; (b) S. Narita, T. Morikawa, T. Shibuya, Linear relationship between the bond lengths and the Pauling bond
    orders in fullerene molecules, Journal of Molecular Structure, (Theochem) 532 (2000) 37-40. [Back]
  47. I. A. Leenson, Sulfuric acid and water: paradoxes of dilution, Journal of Chemical Education, 81 (2004) 991-994. [Back]
  48. S. Klotz, J. M. Besson, G. Hamel, R. J. Nelmes, J. S. Loveday and W. G. Marshall, Metastable ice VII at low temperature and ambient pressure, Nature, 398 (1999) 681-684. [Back]
  49. I. L. Cameron, K. M. Kanal and G. D. Fullerton, Role of protein conformation and aggregation in pumping water in and out of a cell, Cell. Biol. International 30 (2005) 78-85. [Back]
  50. U. Kaatze and Y. Feldman, Broadband dielectric spectrometry of liquids and biosystems, Meas. Science Technol. 17 (2006) R17-R35. [Back] [Back to Top to top of page]
  51. I. Danielewicz-Ferchmin and A.R. Ferchmin, Lowering of the freezing temperature of water at the protein surface due to electric field, Journal of Molecular Liquids, 124 (2006) 114-120. [Back]
  52. F. Palombo, M. Paolantoni, P. Sassi, A. Morresi and R. S. Cataliotti, Spectroscopic studies of the "free" OH stretching bands in liquid alcohols, Journal of Molecular Liquids, 125 (2006) 139-146. [Back]
  53. I. L. Shulgin and E. Ruckenstein, Preferential hydration and solubility of proteins in aqueous solutions of polyethylene glycol, Biophysical Chemistry, 120 (2005) 188-198. [Back]
  54. (a) H. Iglev, M. Schmeisser, K. Simeonidis, A. Thaller and A. Laubereau, Ultrafast superheating and melting of bulk ice, Nature, 439 (2006)183-186; (b) M. Schmeisser, H. Iglev, A. Laubereau, Maximum superheating of bulk ice, Chemical Physics Letters, 442 (2007) 171-175. [Back]
  55. M. R. Frank, C. E. Runge, H. P. Scott, S. J. Maglio, J. Olson, V. B. Prakapenka and G. Shen, Experimental study of the NaCl-H2O system up to 28 GPa: Implications for ice-rich planetary bodies, Phys. Earth Planet. Interiors 155 (2006) 152-162; S. Klotz, L. E. Bove, T. Strässle, T. C. Hansen and A. M. Saitta, The preparation and structure of salty ice VII under pressure, Nature, Mat. 8 (2009) 405-409. [Back]
  56. X. Zhao, A. Striolo, and P. T.Cummings, C60 binds to and deforms nucleotides, Biophys. J. 89 (2005) 3856 -3862. [Back]
  57. E. R. Wright, C. V. Iancu, W. F. Tivol and G. J. Jensen, Observations on the behavior of vitreous ice at ≈ 82 and ≈ 12K, J. Struct. Biol. 153 (2006) 241-252. [Back]
  58. O. Mishima and H. E. Stanley, Decompression-induced melting of ice IV and the liquid-liquid transition in water, Nature, 392 (1998) 164-168. [Back]
  59. (a) M. Jeng, Hot water can freeze faster than cold?!? arXiv:physics/0512262 v1 (2005); (b) M. Balážovič and B. Tomášik, Paradox of temperature decreasing without unique explanation, Temperature 2:1 (2015) 61-62, DOI: 10.4161/23328940.2014.975576; (c) A. A. Romanovsky, Which is the correct answer to the Mpemba
    puzzle?, Temperature 2:1 (2015) 63-64, DOI: 10.1080/23328940.2015.1009800. [Back, 2]
  60. J. Walker, Boiling and the Leidenfrost effect, in Fundamentals of Physics, 6th Ed. D. Halliday, R. Resnick and J. Walker: Student companion site (accessed 17 Jan 2006); V. E. Nakoryakov, S. Ya. Misyura and S. L. Elistratov, The behavior of water droplets on the heated surface, International Journal of Heat Mass Transfer 55 (2012) 6609-6617. [Back]
  61. K. J. Ellis, Human body composition: in vivo methods, Physiological Reviews, 80 (2000) 649-680. [Back]
  62. Institute of Medicine, Dietary reference intakes for water, potassium, sodium, chloride and sulfate, (The National Academic Press, Washington, 2004); Nutrients in drinking water, World Health Organization, ISBN 92 4 159398 9, (2005). [Back]
  63. A. J. Yun, P. Y. Lee and K. A. Bazar, Clinical benefits of hydration and volume expansion in a wide range of illnesses may be attributable to reduction of sympatho-vagal ratio, Med. Hypotheses 64 (2005) 646-650. [Back]
  64. J. A.McEwan and J. S. Colwill, The sensory assessment of the thirst-quenching characteristics of drinks, Food Qual. Prefer. 7 (1996) 101-111. [Back]
  65. S. Chalupka, Tainted water on tap, Am J. Nursing 105 (2005) 40-52. [Back]
  66. (a) P. T. C. Harrison, Fluoride in water: A UK perspective, J. Fluorine Chem. 126 (2005) 1448-1456. (b) Meenakshi and R. C. Maheshwari, Fluoride in drinking water and its removal, J. Hazard. Mat. 137 (2006) 456-463. (c) S. Jagtap, M. K.Yenkie, N.Labhsetwar and S. Rayalu, Fluoride in drinking water and defluoridation of water, Chemical Reviews, 112 (2012) 2454-2466. [Back]
  67. L. Petraccia, G. Liberati, S. G. Masciullo, M. Grassi and A. Fraioli, Water, mineral waters and health, Clin. Nutrition 25 (2006) 377-385. [Back]
  68. (a) R. Gruber, S. Axmann, M..H. Schoenberg, The influence of oxygenated water on the immune status, liver enzymes, and the generation of oxygen radicals: a prospective, randomized, blinded clinical study, Clin. Nutrition 24 (2005) 407-414; (b) C. A. Piantadosi, ‘‘Oxygenated’’ water and athletic performance, British Journal of Sports Medicine, 40 (2006) 740. [Back]
  69. G. I. McIntyre, Cell hydration as the primary factor in carcinogenesis: A unifying concept, Medical Hypotheses, 66 (2006) 518-526. G. I. McIntyre, Increased cell hydration promotes both tumor growth and metastasis: A biochemical mechanism consistent with genetic signatures, Medical Hypotheses, 69 (2007) 1127-1130. [Back, 2]
  70. I. Otsuka and S. Ozeki, Does magnetic treatment of water change its properties? Journal of Physical Chemistry B 110 (2006) 1509-1512. S. Ozeki and I. Otsuka, Transient oxygen clathrate-like hydrate and water networks induced by magnetic fields, Journal of Physical Chemistry B 110 (2006) 20067-20072. [Back, 2]
  71. E. Ben Jacob, Y. Aharonov and Y. Shapira, Bacteria harnessing complexity, Biofilms 1 (2004) 239-263. [Back]
  72. W. E. Brower, D. J. Schedgick and L. K. Bigelow, Thick glassy water by liquid quenching on a diamond wafer Journal of Physical Chemistry B 106 (2002) 4565-4568. [Back]
  73. R. J. Maughan, The sports drink as a functional food: formulations for successful performance, Proc. Nutr. Soc. 57 (1998) 15-23. [Back]
  74. K. Kikuchi, Y. Tanaka, Y. Saihara, M. Maeda, M. Kawamura and Z. Ogumi, Concentration of hydrogen nanobubbles in electrolyzed water, J. Colloid and Interface Science, 298 (2006) 914-919; K. Kikuchi, S. Nagata, Y. Tanaka, Y. Saihara, Z. Ogumi, Characteristics of hydrogen nanobubbles in solutions obtained with water electrolysis, J. Electroanal. Chem. 600 (2007) 303-310; K. Kikuchi, A. Ioka, T. Okua, Y. Tanaka, Y. Saihara and Z. Ogumi, Concentration determination of oxygen nanobubbles in electrolyzed water, J. Colloid Interface Science 329 (2009) 306-309. [Back, 2, 3]
  75. S. Bandyopadhyay, S. Chakraborty, S. Balasubramanian and B. Bagchi, Sensitivity of polar solvation dynamics to the secondary structures of aqueous proteins and the role of surface exposure of the probe, J. American Chem. Soc. 127 (2005) 4071-4075. S. Bandyopadhyay, S. Chakraborty and B. Bagchi, Secondary structure sensitivity of hydrogen bond lifetime dynamics in the protein hydration layer, Journal of the American Chemical Society, 127 (2005) 16660-16667. [Back] [Back to Top to top of page]
  76. I. Brovchenko, A. Krukau, N. Smolin, A. Oleinikova, A. Geiger and R. Winter, Thermal breaking of spanning water networks in the hydration shell of proteins, Journal of Chemical Physics, 123 (2005) 224905. [Back]
  77. M. Nakasako, Water-protein interactions from high-resolution protein crystallography, Phil. Trans. R. Soc. Lond. B 359 (2004) 1191-1206. [Back]
  78. A. Oleinikova, N. Smolin, I. Brovchenko, A. Geiger and R. Winter, Formation of spanning water networks on protein surfaces via 2D percolation transition, J. Physical Chemistry B 109 (2005) 1988-1998. N. Smolin, A. Oleinikova, I. Brovchenko, A. Geiger and Roland Winter, Properties of spanning water networks at protein surfaces, Journal of Physical Chemistry B 109 (2005) 10995-11005. H. Nakagawa and M. Kataoka, Percolation of hydration water as a control of protein dynamics, Journal of Phys. Soc. Japan 79 (2010) 083801. [Back]
  79. M.C. Amiri and A. A. Dadkhah, On reduction in the surface tension of water due to magnetic treatment, Colloids and Surfaces A, 278 (2006) 252-255. [Back]
  80. A. D. Kney and S. A. Parsons, A spectrophotometer-based study of magnetic water treatment: Assessment of ionic vs. surface mechanisms, Water Research, 40 (2006) 517-524. [Back]
  81. J. L. Dashnau, K. A. Sharp and J. M. Vanderkooi, Carbohydrate intramolecular hydrogen-bonding cooperativity and Its effect on water structure, J. Physical Chemistry B 109 (2005) 24152-24159. [Back]
  82. M. Sadeghi, H. Naderi-Manesh, M. Zarrabi and B. Ranjbar, Effective factors in thermostability of thermophilic proteins, Biophysical Chemistry, 119 (2006) 256-270. [Back]
  83. C. Vega and J. L. F. Abascal, Relation between the melting temperature and the temperature of maximum density for the most common models of water, Journal of Chemical Physics, 123 (2005) 144504. [Back]
  84. (a) J. L. F. Abascal and C. Vega, A general purpose model for the condensed phases of water: TIP4P/2005, Journal of Chemical Physics,123 (2005) 234505. This paper derives much from [649]; (b) H. L. Pi, J. L. Aragones, C. Vega, E. G. Noya, J. L. F. Abascal, M. A. Gonzalez and C. McBride, Anomalies in water as obtained from computer simulations of the TIP4P/2005 model: density maxima, and density, isothermal compressibility and heat capacity minima, Molecular Physics,107 (2009) 365-374; (c) I. M. Zeron, J. L. F. Abascal and C. Vega, A force field of Li+, Na+, K+, Mg+, Ca2+, Cl, and SO2−4 in aqueous solution based on the TIP4P/2005 water model and scaled charges for the ions, Journal of Chemical Physics, 151 (2019) 134504. [Back]
  85. D. J. Anick, Proton and deuteron position preferences in water clusters: An ab initio study, J. Chemical Physics, 123 (2005) 244309. [Back]
  86. D. J. Anick, Positional isotope effect for the water tetramer, Comput. Letters, (2006) to be published. [Back]
  87. G. Job and F. Herrmann, Chemical potential-a quantity in search of recognition, Eur. Journal of Phys. 27 (2006) 353-371. [Back]
  88. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney and R. L. Nuttall, The NBS tables of chemical thermodynamic properties, Journal of Physical Chemistry Reference Data, 11 Suppl. 2 (1982). [Back]
  89. G. Archontis and E. Leontidis. Dissecting the stabilization of iodide at the air-water interface into components: A free energy analysis. Chemical Physics Letters, 420 (2006) 199-203. [Back]
  90. (a) Y. Zhao, Y.-H. Kim, M.-H. Du and S. B. Zhang, First-principles prediction of icosahedral quantum dots for tetravalent semiconductors, Physical Review, Letters, 93 (2004) 01550. (b) K. Nishio, T. Morishita, W. Shinoda and M. Mikami, Molecular dynamics simulation of icosahedral Si quantum dot formation from liquid droplets, Physical Review, B 72 (2005) 245321. [Back]
  91. M. G. Sajilata, R. S. Singhal and P. R. Kulkarni, Resistant starch- A review, Comprehensive Review s in Food Science and Food Safety, 5 (2006) 1-17. E. Fuentes-Zaragoza, M. J. Riquelme-Navarrete, E. Sánchez-Zapata and J. A. Pérez-Álvarez, Resistant starch as functional ingredient: a review, Food Research International 43 (2010) 931-942. [Back]
  92. H. S. Frank, Structural models, in Water A Comprehensive Treatise, Vol. 1, Ed. F. Franks, (Plenum Press, New York, 1972) pp. 515-543. [Back, 2]
  93. R. Roy, W. A. Tiller, I. Bell and M. R. Hoover, The structure of liquid water; novel insights from materials research; potential relevance to homeopathy, Mat. Research Innovat. 9-4 (2005) 93-124; online 577-607. [Back, 2, 3]
  94. Y. Wu, H. L. Tepper and G. A. Voth, Flexible simple point-charge water model with improved liquid state properties, Journal of Chemical Physics,124 (2006) 024503. [Back]
  95. M. M. Koza, R. P. May and H. Schober, On the heterogeneous character of water's amorphous polymorphism, J. Appl. Cryst. 40 (2007) s517-s521; arXiv:cond-mat/0706.3296v1. [Back]
  96. W. X. Zhang, C. He, J. S. Lian and Q. Jiang, Selected crystallization of water as a function of size, Chemical Physics Letters, 421 (2006) 251-255. [Back]
  97. R. Heyrovska, Ionic concentrations and hydration numbers of "Supporting electrolytes", Electroanalysis 18 (2006) 351-361. [Back]
  98. J. Xu, K. W. Plaxco and S. J. Allen, Absorption spectra of liquid water and aqueous buffers between 0.3 and 3.72 THz, Journal of Chemical Physics,124 (2006) 036101. [Back]
  99. H. Kanno and K. Miyata, The location of the second critical point of water, Chemical Physics Letters, 422 (2006) 507-512. [Back]
  100. T. P. Bonacquisti, A drinking water utility’s perspective on bromide, bromate, and ozonation, Toxicology 221 (2006) 145–148. [Back] [Back to Top to top of page]

 

 

 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2005 and last updated by Martin Chaplin on 27 October, 2021


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License