Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
 Go to my page Water Structure and Science

Water Structure and Science, References 4101- 4200


  1. Z.-H. Yang and K.-P. Yang, A crucial incorrect understanding in the traditional solution theory, Journal of Molecular Liquids, 301 (2020) 112379. [Back]
  2. H. L. Callendar, On vapour-pressure and osmotic pressure of strong solutions, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 80(541) (1908) 466-500. [Back, 2, 3]
  3. A. S. Wexler, Raoult was right after all, ACS Omega, 4 (2019) 12848-12852; A. S. Wexler, Raoult was right after all: Statistical mechanics derivation and volumetric validation, Fluid Phase Equilibria, 531 (2021) 112899. [Back]
  4. S. Choi, S. Parameswaran and J. Choi, Understanding alcohol aggregates and water hydrogen bond network towards miscibility in alcohol solutions: Graph theoretical analysis, Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 10.1039/D0CP01991G. [Back]
  5. N. Sakashita, H. Ishikita and K. Saito, Rigidly hydrogen-bonded water molecules facilitate proton transfer in photosystem II, Physical Chemistry Chemical Physics, 22 (2020) 15831. [Back]
  6. I. Pethes, I. Bako and L. Pusztai, Chloride ions as integral parts of hydrogen bonded networks in aqueous salt solutions: the appearance of solvent separated anion pairs, Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 10.1039/D0CP01806F. [Back]
  7. X. E. Wu, W. J. Lu, L. M. Streacker, H. S. Ashbaugh and D. Ben-Amotz, Methane hydration-shell structure and fragility, Angewandte Chemie International Edition, 57 (2018) 15133-15137. [Back]
  8. A. J. Bredt and D. Ben-Amotz, Influence of crowding on hydrophobic hydration-shell structure, Physical Chemistry Chemical Physics, 22 (2020) 11724-11730. [Back]
  9. S. Biswas and B. S. Mallik, Negligible effect on the structure and vibrational spectral dynamics of water molecules near hydrophobic solutes, ChemistrySelect, 5 (2020) 11549-11559. [Back]
  10. S. Li , A. Azizi, S. R. Kirk and S. Jenkins, An explanation of the unusual strength of the hydrogen bond in small water clusters, International Journal of Quantum Chemistry, (2020) 1-10. [Back]
  11. K. Matsumura, K. Kawase and K. Takeya, Observation of sublimation of ice using terahertz spectroscopy, Royal Society Open Science, 7 (2020) 192083. [Back]
  12. J. C. Phillips, Self-organized networks: Darwinian evolution of dynein rings, stalks, and stalk heads, Proceedings of the National Academy of Sciences, 117 (2020) 7799-7802; E. V. Koonin, Y. I. Wolf and M. I. Katsnelson, No waves of intelligent design Proceedings of the National Academy of Sciences, 117 (2020) 19639-19640; J. C. Phillips, Reply to Koonin et al, Evolution of proteins is Darwinian, Proceedings of the National Academy of Sciences, 117 (2020) 16941-16942. [Back]
  13. L. Reuss, Water transport across cell membranes, in: eLS. John Wiley & Sons, Ltd: Chichester, (2012) DOI: 10.1002/9780470015902.a0020621.pub2. [Back]
  14. S. N. Abedin, V. Leela and K. Loganathasamy, Aquaporin in mammalian species: A review, International Journal of Chemical Studies, 7 (2019) 1484-1491. [Back]
  15. M. Šoltésová, H. Elicharová, P. Srb,†, M. Růžička, L. Janisova, H. Sychrová and J. Lang, Nuclear magnetic resonance investigation of water transport through the plasma membrane of various yeast species, FEMS Microbiology Letters, 366 (2019) fnz220; M. K. Durrani and J. Kang, Transition-state theory-based analysis of diffusion of water in yeast cells, FEMS Microbiology Letters, 367 (2020) fnaa155. [Back]
  16. IRSN, Institute for Radiological Protection and Nuclear Safety Radionuclide fact sheet Tritium and the environment, revision date 2010; J. J. Katz, Deuterium and Tritium. Kirk-Othmer Encyclopedia of Chemical Technology. (2004) doi:10.1002/0471238961.0405212011012026.a0. [Back]
  17. S. J. Palmer, The effect of temperature on surface tension, Physics Education, 11 (1976) 119-120. [Back]
  18. H. Weingärtner, Water, Chapter 1, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, (2007) 1-12, DOI: 10.1002/14356007.a28 001. [Back]
  19. S. J. Park and B. J. Schwartz, Evaluating simple ab initio models of the hydrated eectron: The role of dynamical fuctuations, The Journal of Physical Chemistry B, (2020) Article in press, DOI: 10.1021/acs.jpcb.0c06356. [Back]
  20. H. L. Clever, R. Battino, H. Miyamoto, Y. Yampolski and C. L. Young, IUPAC-NIST Solubility Data Series. 103. Oxygen and ozone in water, aqueous solutions, and organic liquids (Supplement to solubility data series volume 7), Journal of Physical and Chemical Reference Data, 43 (2014) 033102. [Back]
  21. H. Arcis, J. P. Ferguson, J. S. Cox and P. R. Tremaine, New data from direct conductivity measurements and revised formulations from T = 273 K to 674 K and p = 0.1 MPa to 31 MPa, Journal of Physical and Chemical Reference Data, 49 (2020) 033103. [Back]
  22. R. Shi and H. Tanaka, The anomalies and criticality of liquid water, Proceedings of the National Academy of Sciences, 117 (2020) 26591-26599. [Back, 2, 3, 4, 5]
  23. P. A. Satpute and J. C. Earthman, Hydroxyl ion stabilization of bulk nanobubbles resulting from mcrobubble shrinkage, Journal of Colloid and Interface Science, (2020) Article in press, DOI: 10.1016/j.jcis.2020.09.100. [Back]
  24. I. Simkó, T. Furtenbacher, J. Hrubý, N. F. Zobov, O. L. Polyansky, J. Tennyson, R. R. Gamache, T. Szidarovszky, N. Dénes and A. G. Császár, Recommended ideal-gas thermochemical functions for heavy water and its substituent isotopologues, Journal of Physical and Chemical Reference Data, 46 (2017) 023104. [Back, 2]
  25. T. Furtenbacher, T. Szidarovszky, J. Hrubý, A. A. Kyuberis, N. F. Zobov, O. L. Polyansky, J. Tennyson and A. G. Császár, Definitive ideal-gas thermochemical functions of the H216O molecule, Journal of Physical and Chemical Reference Data, 45 (2016) 043104. [Back] [Back to Top to top of page]
  26. S. van der Post, K. S Jabbar, G. Birchenough, L. Arike, N. Akhtar, H. Sjovall, M. E V Johansson and G. C Hansson, Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis, Gut, 68 (2019) 2142-2151. [Back
  27. K. Bergstrom, X. Shan, D. Casero, A. Batushansky, V. Lagishetty, J. P. Jacobs, C. Hoover, Y. Kondo, B. Shao, L. Gao, W.Zandberg, B. Noyovitz, J. M. McDaniel, D. L. Gibson, S. Pakpour, N. Kazemian, S.McGee, C. W. Houchen, C. V. Rao, T. M. Griffin, J. L. Sonnenburg, R. P. McEver, J. Braun and L. Xia, Proximal colon–derived O-glycosylated mucus encapsulates and modulates the microbiota, Science, 370 (2020) 467-472; G. M. H. Birchenough and M. E. V. Johansson, Forming a mucus barrier along the colon, Optimal barrier function requires both proximal colon– and distal colon–derived mucus, Science, 370 (2020) 402-403. [Back
  28. S. Yang, M. Chen, Y. Su, J. Xu , X. Wu and C. Tian, Stabilization of hydroxide ions at the interface of a hydrophobic monolayer on water via reduced proton transfer, Physical Review Letters, 125 (2020) 156803. [Back
  29. N. Yang, S. C. Edington, T. H. Choi, E. V. Henderson, J. P. Heindel, S. S. Xantheas, K. D. Jordan and M. A. Johnson, Mapping the temperature-dependent and network site-specific onset of spectral diffusion at the surface of a water cluster cage, Proceedings of the National Academy of Sciences, (2020) Article in press, DOI: 10.1073/pnas.2017150117. [Back
  30. T. E. Gartner III, K. M. Hunter, E. Lambros, A. Caruso, M. Riera, G. R. Medders, A. Z. Panagiotopoulos, P. G. Debenedetti and F. Paesani, The anomalies and local structure of liquid water from many-body molecular dynamics simulations, chemrxiv (2021), DOI: 10.33774/chemrxiv-2021-bsk4b. [Back
  31. A. A. Sandilya, U. Natarajan and M. H. Priya, Molecular view into the cyclodextrin cavity: Structure and hydration, ACS Omega, (2020) Article in press, DOI: 10.1021/acsomega.0c02760. [Back
  32. V. Fuentes-Landete, S. Rasti, R. Schlögl, J. Meyer and T. Loerting, Calorimetric signature of deuterated ice II: Turning an endotherm to an exotherm, Journal of Physical Chemistry Letters, 11 (2020) 8268-8274. [Back, 2]
  33. T. Hayashi, C. Muguruma and Y. Okamoto, Calculation of the residual entropy of Ice Ih by Monte Carlo simulation with the combination of the replica-exchange Wang-Landau algorithm and multicanonical replica-exchange method, arXiv.org (2020) arxiv.org/abs/2009.11591v1. [Back
  34. (a) A. Fernstrom and M. Goldblatt, Aerobiology and its role in the transmission of infectious diseases, Journal of Pathogens, (2013) 493960, DOI: 10.1155/2013/493960; (b) A. Božič and M. Kanduč, Relative humidity in droplet and airborne transmission of disease, arXiv:2010.11588v1 [cond-mat.soft] 22 Oct 2020. [Back
  35. (a) K. H. Chan, J. S. M. Peiris, S. Y. Lam, L. L. M. Poon, K. Y.Yuen and W.H. Seto, The effects of temperature and relative humidity on the viability of the SARS coronavirus, Advances in Virology, 2011 (2011) 734690, doi:10.1155/2011/734690; (b) Y. Wu, W. Jing, J. Liu, Q. Ma, J. Yuan, Y. Wang, M. Du and M. Liu, Effects of temperature and humidity on the daily new cases and new deaths of COVID-19 in 166 countries, Science of the Total Environment, 729 (2020) 139051. [Back
  36. M. G. Lawrence, The relationship between relative humidity and the dewpoint temperature in moist air, American Meteorological Society, (2005) Feb. 225-234. [Back
  37. I. V. Biktasheva, Role of a habitat's air humidity in Covid-19 mortality, Science of the Total Environment, 736 (2020) 138763. [Back
  38. A. G.,Beule, Physiology and pathophysiology of respiratory mucosa of the nose and the paranasal sinuses, GMS Current Topics in Otorhinolaryngology - Head and Neck Surgery, 9 ( 2010) Doc07. [Back
  39. T. Seki, K.-Y. Chiang, C.-C. Yu, X. Yu, M. Okuno, J. Hunger, Y. Nagata and M. Bonn, The bending mode of water: A powerful probe for hydrogen bond structure of aqueous systems, Journal of Physical Chemistry Letters, 11 (2020) 8459-8469. [Back
  40. D. M. de Oliveira, S.R. Zukowski, V. Palivec, J. Hénin, H. Martinez-Seara, D. Ben-Amotz, P. Jungwirth and E. Duboué-Dijon, Binding of divalent cations to acetate: molecular simulations guided by Raman spectroscopy,
    Physical Chemistry Chemical Physics, 22 (2020) 24014-24027. [Back
  41. I. Jukić, M. Požar and B. Lovrinčević, Comparative analysis of ethanol dynamics in aqueous and non-aqueous solutions, Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 10.1039/d0cp03160g. [Back
  42. D. Mallamace, C. Corsaro, F. Mallamace and H. E. Stanley, Experimental tests for a liquid-liquid critical point in water, Science China Physics, Mechanics & Astronomy, 63 (2020) 127001; F. Mallamace, C. Corsaro, D. Mallamace, E. Fazio, S.-H. Chen and A. Cupane. Specific heat and transport functions of water, International Journal of Molecular Sciences, 21 (2020) 622; F. Mallamace, G. Mensitieri, D. Mallamace, M. Salzano de Luna and S.-H. Chen, Some aspects of the lquid water thermodynamic behavior: From the stable to the deep supercooled regime, International Journal of Molecular Sciences, 21 (2020) 7269. [Back, 2, 3, 4, 5]
  43. G. G. Simeoni, T. Bryk, F. A. Gorelli, M. Krisch, G. Ruocco, M. Santoro and T. Scopigno, The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids Nature Physics, 6 (2010) 503-507. [Back]
  44. H. Zhang, X. Ji, P. Li, C. Liu, J. Lou, Z. Wang, W. Wen, Y. Xiao, M. Zhang and X. Zhu, Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases, Science China Life Sciences, 63 (2020) 953-985. [Back]
  45. S. Saito, B. Bagchi and I. Ohmine, Crucial role of fragmented and isolated defects in persistent relaxation of deeply supercooled water, The Journal of Chemical Physics, 149 (2018) 124504. [Back, 2]
  46. H. Lambley, T. M. Schutziusa and D. Poulikakosa, Superhydrophobic surfaces for extreme environmental conditions, Proceedings of the National Academy of Sciences, (2020) Article in press, DOI: 10.1073/pnas.2008775117. [Back]
  47. J. I. Lee, B.‑S. Yim and J.‑M. Kim, Effect of dissolved‑gas concentration on bulk nanobubbles generation using ultrasonication, Scientific Reports, 10 (2020) 18816. [Back]
  48. Y. Jia, X. Lu, Z. Cao and T. Yan, From a bulk to nanoconfined water chain: bridge water at the pore of the (6,6) carbon nanotube, 1, Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 0.1039/d0cp02531c. [Back]
  49. I. de A. Ribeiro and M. de Koning, Non-Newtonian flow effects in supercooled water, Physical Review Research, 2 (2020) 022004(R). [Back]
  50. J. P. F. Nunes, K. Ledbetter, M. Lin, M. Kozina, D. P. DePonte, E. Biasin, M. Centurion, C. J. Crissman, M. Dunning, S. Guillet, K. Jobe, Y. Liu, M. Mo, X. Shen, R. Sublett, S. Weathersby, C. Yoneda, T. J. A. Wolf, J. Yang, A. A. Cordones and X. J. Wang, Liquid-phase mega-electron-volt ultrafast electron diffraction, Structural Dynamics, 7 (2020) 024301. [Back] [Back to Top to top of page]
  51. K. R. Harris, Communications: The fractional Stokes–Einstein equation: Application to water,The Journal of Chemical Physics, 132 (2010) 231103; I. N. Tsimpanogiannis , S. H. Jamali , I. G. Economou , T. J. H. Vlugt and O. A. Moultos, On the validity of the Stokes–Einstein relation for various water force fields, Molecular Physics, 118 (2020) e1702729. [Back]
  52. H. Tanaka, Liquid-liquid transition and polyamorphism, The Journal of Chemical Physics, 153 (2020) 130901. [Back]
  53. F. Martelli, F. Leoni, F. Sciortino and J. Russo, Connection between liquid and non-crystalline solid phases in water, The Journal of Chemical Physics, 153 (2020) 104503. [Back]
  54. H. Xu, J. Ångström, T. Eklund and K. Amann-Winkel, Electron beam-induced transformation in high-density amorphous ices, Journal of Physical Chemistry B, 124 (2020) 9283-9288. [Back]
  55. K. Imrichová, L. Veselý, T. M. Gasser, T. Loerting, V. Nedĕla and D. Heger, Vitrification and increase of basicity in between ice Ih crystals in rapidly frozen dilute NaCl aqueous solutions, The Journal of Chemical Physics, 151 (2019) 014503 (2019). [Back]
  56. C. Lin, X. Liu, X. Yong, J. S. Tse, J. S. Smith, N.J. English, B. Wang, M. Li, W. Yang and H.-K. Mao, Temperature-dependent kinetic pathways featuring distinctive thermal-activation mechanisms in structural evolution of ice VII, Proceedings of the National Academy of Sciences, (2020) Article in press, DOI: 10.1073/pnas.2007959117. [Back]
  57. D. Seung, Amylose in starch: towards an understanding of biosynthesis, structure and function, New Phytologist, 228 (2020) 1490-1504. [Back]
  58. K. Ariga, Molecular recognition at the air–water interface: nanoarchitectonic design and physicochemical understanding, Physical Chemistry Chemical Physics, (2020) Article in press, doi:10.1039/d0cp04174b. [Back]
  59. J. D. Noti, , F. M. Blachere, C. M. McMillen, W. G. Lindsley, M. L. Kashon, D. R. Slaughter and D. H. Beezhold, High humidity leads to loss of nfectious influenza virus from simulated coughs, PLoS One. 8 (2013) e57485. [Back]
  60. F. Li, Y. Wang, Z. men and C. Sun, Exploring the hydrogen bond kinetics of methanol-water solutions using Raman scattering, Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 10.1039/d0cp04295a. [Back]
  61. Q. Sun, The effects of dissolved hydrophobic and hydrophilic groups on water structure, Journal of Solution Chemistry, (2020) Article in press, DOI: 10.1007/s10953-020-01035-6. [Back]
  62. P. Luo, Y. Zhai, E. Senses, E. Mamontov, G. Xu, Y. Z and A. Faraone, Influence of kosmotrope and chaotrope salts on water structural relaxation, Journal of Physical Chemistry Letters., 11 ( 2020) 8970-8975. [Back]
  63. P. Voosen, Seas are rising faster than ever, Science, 370 (2020) 901. [Back]
  64. P. K. Maciejewski, Evidence of a convective instability allowing warm water to freeze in less tme than cold water, Journal of Heat Transfer, 118 (1996) 65-72. [Back]
  65. N. Bignell, The effect of dissolved air on the density of water, Metrologia, 19 (1983) 57-59. [Back]
  66. X. Cheng and J. C. Smith, Biological membrane organization and cellular signaling, Chemical Reviews, 119  (2019) 5849-5880; M. A. Frias and E. A. Disalvo, Breakdown of classical paradigms in relation to membrane structure and functions, BBA - Biomembranes, 1863 (2021), 183512. [Back]
  67. H. Chang, K. Duncan, K. Kim and S. Paik, Electrolysis: What textbooks don’t tell us, Chemistry Education Research and Practice, (2020), DOI: 10.1039/C9RP00218A. [Back]
  68. G. Tsaparlis, Teaching and learning electrochemistry, Israel Journal of Chemistry, 59 (2019) 478-492. [Back]
  69. S.-h. Urashima, T. Uchida and H. Yui, A hydrogen-bonding structure in self-formed nanodroplets of water adsorbed on amorphous silica revealed via surface-selective vibrational spectroscopy, Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 10.1039/d0cp03207g. [Back]
  70. B. Rana and J. M. Herbert, Role of hemibonding in the structure and ultraviolet spectroscopy of the aqueous hydroxyl radical, Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 10.1039/d0cp05216g; D. M. Chipman, Hemibonding between hydroxyl radical and water, Journal of Physical Chemistry A, 115 (2011) 1161-1171. [Back, 2]
  71. J. Lentz and S. H. Garofalini, Formation and migration of H3O+ and OH ions at the water/silica and water/vapor interfaces under the influence of a static electric field: a molecular dynamics study, Physical Chemistry Chemical Physics, 22 (2020) 22537-22548. [Back]
  72. A. Srivastava, S. Malik, S. Karmakar and A. Debnath, Dynamic coupling of a hydration layer to a fluid phospholipid membrane: intermittency and multiple time-scale relaxations, Physical Chemistry Chemical Physics, 22 (2020) 21158-21168. [Back]
  73. I. Klich, O. Raz, O. Hirschberg and M. Vucelja, Mpemba index and anomalous relaxation, Physical Review X, 9 (2019) 021060; A. Kumar and J. Bechhoefer, Exponentially faster cooling in a colloidal system, Nature, 584 (2020) 64-68. [Back]
  74. M. Bogunia and M. Makowski, Influence of ionic strength on hydrophobic interactions in water: Dependence on solute size and shape, Journal of Physical Chemistry B, 124 (2020) 10326-10336. [Back]
  75. H. Niinomi, T. Yamazaki, H. Nada, T. Hama, A. Kouchi, J. T. Okada, J. Nozawa, S. Uda and Y. Kimura, High-density liquid water at a water–ice interface, The Journal of Physical Chemistry Letters, (2020) Article in press, DOI: 10.1021/acs.jpclett.0c01907. [Back]  [Back to Top to top of page]
  76. M. Marshall, The water paradox and the origins of life, Nature, 588 (2020) 210-213. [Back, 2]
  77. S. Kim and J. M.J. Swanson, The surface and hydration properties of lipid droplets, Biophysical Journal, (2020) Article in press, DOI: https://doi.org/10.1016/j.bpj.2020.10.001. [Back]
  78. C. D. Bortner and J. A. Cidlowski, Ions, the movement of water and the apoptotic volume decrease, Frontiers in Cell and Developmental Biology, (2020) Article in press, DOI: 10.3389/fcell.2020.589985. [Back]
  79. R. Ciriminna, A. Fidalgo, F. Meneguzzo, A. Presentato, A. Scurria, D. Nuzzo, R. Alduina, L. M. Ilharco and M. Pagliaro, Pectin: A long neglected broad-spectrum antibacterialm, ChemMedChem, 15 (2020) Article in press, doi:10.1002/cmdc.202000518. [Back]
  80. S. Mondal and B. Bagchi, Water layer at hydrophobic surface: Electrically dead but dynamically alive? Nano Letters, (2020) Article in press, doi:10.1021/acs.nanolett.0c04312. [Back]
  81. M. T. C. Martins-Costa, J. M. Anglada, J. S. Francisco and M. F. Ruiz-López, The aqueous surface as an efficient transient stop for the reactivity of gaseous NO2 in liquid water, Journal of the American Chemical Society, (2020) Article in press, doi:10.1021/jacs.0c10364. [Back]
  82. Y. Kou and S. J. Schmidt, Vapor pressure and water activity measurements of saturated salt solutions made with D2O at 20 °C , Food Chemistry, 66 (1999) 253-255. [Back]
  83. I. de A. A. Fernandes, A. C. Pedro, V. R. Ribeiro, D. G. Bortolini, M. S. C. Ozaki, G. M. Maciel andC. W. I. Haminiuk, Bacterial cellulose: From production optimization to new applications, International Journal of Biological Macromolecules, 164 (2020) 2598-2611. [Back]
  84. V. M. Silonov and V. V. Chubaro, Amorphous ice, RENSIT, 7 (2015) 55-67, DOI: 10.17725/rensit.2015.07.055. [Back]
  85. H. Cui, L. Zhang, L. Eltoukhy, Qi. Jiang, S. K. Korkunç, K.-E. Jaeger, U. Schwaneberg and M. D. Davari, Enzyme hydration determines resistance in organic cosolvents, ACS Catalysis, 10 (2020) 14847-14856. [Back]
  86. A. M. Klibanov,. Enzymes that work in organic solvents. CHEMTECH, 16 (1986) 354-359. [Back]
  87. K. Visuri and A. M. Klibanov, Enzymic production of high fructose corn syrup (HFCS). containing 55% fructose in aqueous ethanol. Biotechnology and Bioengineering, 30, (1987) 917-920. [Back]
  88. K. Martinek, A. N. Semenov and I. V. Berezin, Enzymic synthesis in biphasic aqueous-organic systems. 1. Chemical equilibrium shift. Biochimica et Biophysica Acta, 658 (1981) 76-89; K. Martinek and A. N. Semenov, Enzymic synthesis in biphasic aqueous-organic systems. 2. Shift in ionic equilibria. Biochimica et Biophysica Acta, 658 (1981) 90-101. [Back]
  89. C. M. Tonauer, E.-M. Köck, T. M. Gasser, V. Fuentes-Landete, R. Henn, S. Mayr, C. G. Kirchler, C. W. Huck and T. Loerting, Near-infrared spectra of high-density crystalline H2O Ices II, IV, V, VI, IX, and XII, The Journal of Physical Chemistry A,, 125 (2021) 1062-1068. [Back, 2, 3, 4, 5, 6, 7]
  90. A. J. Cross , D. L. Goldsby, T. F. Hager and I. B. Smith, The rheological behavior of CO2 ice: Application to glacial fow on Mars, Geophysical Research Letters, 47 (2020) e2020GL090431, DOI: 11010.1029/2020GL090431. [Back]
  91. S. Braun, P. Ronzheimer, M. Schreiber, S. S. Hodgman, T. Rom, I. Bloch, and U. Schneider, Negative absolute temperature for motional degrees of freedom, Science, 339 (2013) 52-55; Z. Merali, Quantum gas goes below absolute zero, Science, 339 (2013) DOI: 10.1038/nature.2013.12146. [Back]
  92. S.-R. Choi, J. Lee, Y.-J. Seo, H. S. Kong, M. Kim, E.S. Jin, J. R. Lee, J.-H. Lee, Molecular basis of ice-binding and cryopreservation activities of type III antifreeze proteins, Computational and Structural Biotechnology Journal, 19 (2021) 897-909. [Back]
  93. F. Martelli, Topology and complexity of the hydrogen bond network in classical models of water, arXiv:2101.09160v1 [cond-mat.soft] 22 Jan 2021. [Back]
  94. S. J. Roeters, T. W. Golbek, M. Bregnhøj, T. Drace, S. Alamdari, W. Roseboom, G. Kramer, T. Šantl-Temkiv, K. Finster, J. Pfaendtner, S. Woutersen, T. Boesen and T. Weidner, Ice-nucleating proteins are activated by low temperatures to control the structure of interfacial water, Nature Communications, 12 (2021) 1183. [Back]
  95. A. Kholmanskiy, Synergism of the dynamics of tetrahedral hydrogen bonds of liquid water, (2021), https://arxiv.org/abs/2102.06030. [Back]
  96. A. Shugai, U. Nagel, Y. Murata, Yongjun Li, S. Mamone, A. Krachmalnicoff, S. Alom, R. J. Whitby, M. H. Levitt and T. Rõõm, Infrared spectroscopy of endohedral H2O in C60, arXiv:2102.06389v1 [physics.chem-ph] 12 Feb 2021. [Back]
  97. M. Eraković and M. T. Cvitaš, Tunnelling splitting patterns in some partially deuterated water trimers, Physical Chemistry Chemical Physics, (2021) Article in press, DOI: 10.1039/d0cp06135b. [Back]
  98. V. V. Тurov, V. М. Gun’ko, Т. V. Krupskaia, L. S. Andriyko, А. I. Marynin and V. N. Pasichnyi, Thixotropic system based on mixture of hydrophilic and hydrophobic silica, Chemistry, Physics and Technology of Surface, 11 (2020) 456-469. [Back]
  99. A. Reinhardt and B. Cheng, Quantum-mechanical exploration of the phase diagram of water, Nature Communications, 2 (2021588; arxiv.org/pdf/2010.13729.pdf. [Back]
  100. M. B. de Kock, S. Azim, G. H. Kassier and R. J. D. Miller, Determining the radial distribution function of water using electron scattering: A key to solution phase chemistry, Journal of Chemical Physics, 153 (2020) 194504. [Back]  [Back to Top to top of page]


Home | Site Index | Site Map | Search | LSBU | Top


This page was established in 2020 and last updated by Martin Chaplin on 2 September, 2022

Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License