Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
 Go to my page Water Structure and Science

Water Structure and Science, References 3801- 3900

 

  1. D. R. Moberg, D. Becker, C. W. Dierking, F. Zurheide, B.Bandowc, U. Buck, A. Hudait, V. Molinero, F. Paesani and T. Zeuch, The end of ice I, Proceedings of the National Academy of Sciences, (2019) Article in press, DOI: 10.1073/pnas.1914254116; ; K. D. Jordan, Smallest water clusters supporting the ice I structure, Proceedings of the National Academy of Sciences, (2019) Article in press, DOI: 10.1073/pnas.1918178116. [Back]
  2. Y. Liu and J. Li, An accurate full-dimensional permutationally invariant potential energy surface for the interaction between H2O and CO, Physical Chemistry Chemical Physics , 21 (2019) 24101-24111; H2O–CO and D2O–CO complexes: P. M. Felker and Z. Bačić, Intra and intermolecular rovibrational states from full-dimensional and fully coupled quantum calculations, Journal of Chemical Physics , 153 (2020) 074107. [Back]
  3. H. N. P. Dayarathne, S. Jeong and A. Jang, Chemical-free scale inhibition method for seawater reverse osmosis membrane process: Air micro-nano bubbles, Desalination, 461 (2019) 1-9. [Back]
  4. R. Liang,, H. Xu, Y. Shen, S.Sun, J. Xu, S. Meng, Y. R. Shen and C. Tian, Nucleation and dissociation of methane clathrate embryo at the gas–water interface, Proceedings of the National Academy of Sciences, (2019) Article in press, DOI: 10.1073/pnas.1912592116. [Back]
  5. C. Schran and D. Marx, Quantum nature of the hydrogen bond from ambient conditions down to ultra-low
    temperatures, Physical Chemistry Chemical Physics , (2019) Article in press, DOI: 10.1039/c9cp04795f. [Back]
  6. S. Maheshwari, M. van der Hoef, J. R. Rodríguez and D. Lohse, Leakiness of pinned neighboring surface nanobubbles induced by strong gas−surface interaction, ACS Nano, 12 (2018) 2603-2609; D. Li, B. Zeng and Y. Wang, Probing the ‘Gas tunnel’ between neighboring nanobubbles, Langmuir, (2019) Article in press, DOI: 10.1021/acs.langmuir.9b02682. [Back]
  7. A. Herburger, E. Barwa, M. Ončák, J. Heller, C. van der Linde, D. M. Neumark and M. K. Beyer, Probing the structural evolution of the hydrated electron in water cluster anions (H2Ol)n, n ≤ 200, by electronic absorption spectroscopy, Journal of the American Chemical Society, 141 (2019) 18000-18003. [Back]
  8. X. Wang, S. Ramírez-Hinestrosa, J. Dobnikar and D. Frenkel. The Lennard-Jones potential: when (not)
    to use it, Physical Chemistry Chemical Physics, (2019) Article in press, DOI: 10.1039/c9cp05445f. [Back]
  9. P. Schienbein and D. Marx, Assessing the properties of supercritical water in terms of structural dynamics and electronic polarization effects, Physical Chemistry Chemical Physics , (2019) Article in press, DOI: 10.1039/c9cp05610f. [Back]
  10. F. Ricceri, M. Giagnorio, G. Farinelli, G. Blandini, M. Minella, D. Vione and A. Tiraferri, Desalination of produced water by membrane distillation: Effect of the feed components and of apretreatment by Fenton oxidation, Scientific Reports, 9 (2019) 14964. [Back, 2]
  11. A. Alkhudhiri, N. Darwish and N. Hilal, Membrane distillation: A comprehensive review, Desalination, 287 (2012) 2-18. [Back]
  12. A. Jakubowska and T. Kozik, Chemometric study of kosmotropic and chaotropic ion properties related to Hofmeister effects, Journal of Chemometrics, (2019) e3187, DOI: 10.1002/cem.3187. [Back]
  13. M. Maurer and C. Oostenbrink, Water in protein hydration and ligand recognition, Journal of Molecular Recognition, (2019) e2810, DOI: 10.1002/jmr.2810. [Back]
  14. Y. Yu, T. Tyrikos-Ergas, Y. Zhu, G. Fittolani, V. Bordoni, A. Singhal, R. J. Fair, A. Grafmgller, P. H. Seeberger and M. Delbianco, Systematic hydrogen-bond manipulations to establish polysaccharide structure–property correlations, Angewandte Chemie International Edition, 58 (2019) 13127-13132. [Back]
  15. S. Chakraborty and B. Jana, Antifreeze proteins: An unusual tale of structural evolution, hydration and function
    Proceedings of the Indian National Academy of Sciences, 85 (2019) 169-187, DOI: 10.16943/ptinsa/2018/49553. [Back]
  16. H. Nakagawa and T. Oyama, Molecular basis of water activity in glycerol–water mixtures, Frontiers in Chemistry, 7 (2019) 731, DOI: 10.3389/fchem.2019.00731. [Back]
  17. W. J. Scott, Water relations of Staphylococcus Aureus at 30°C, Australian Journal of Biological Sciences, 6 (1953) 549-564. [Back]
  18. M. S. Mirzaei, A. A. Taherpour and S. Mirzaei, Proton shuttle efficiency of bicarbonate: A theoretical study on tautomerization and CO2 hydration, Tetrahedron, (2019) Article in press, DOI: 10.1016/j.tet.2019.130693. [Back]
  19. W. J. Scott, Water relations of Staphylococcus Aureus at 30°C, Australian Journal of Biological Sciences, 6 (1953) 549-564. [Back]
  20. Z.-J. Zhao, X.-L. Qin, J.-W. Cao, X.-L. Zhu, Y.-C. Yang, H.-C. Wang and P.Zhang, Computing investigations of molecular and atomic vibrations of ice IX, ACS Omega , 4 (2019) 18936-18941, DOI: 10.1021/acsomega.9b03190. [Back]
  21. H. Vondracek, S. Alfarano, C. Hoberg, I. Kolling, F. Novelli, F. Sebastiani, J.-B. Brubach, P.Roy, G. Schwaab, M. Havenith, Urea's match in the hydrogen-bond network? A high pressure THz study, Biophysical Chemistry, 254 (2019) 106240. [Back]
  22. L. L. Palese, Oxygen-oxygen distances in protein-bound crystallographic water suggest the presence of protonated clusters, Biochimica et Biophysica Acta, - General Subjects, (2019) Article in press, DOI: 10.1016/j.bbagen.2019.129480; L. L. Palese, The oxygen-oxygen distance of water in crystallographic data sets, Data in brief ,28 (2020) 105076. [Back]
  23. J. H. Batagoda, S. D. A. Hewage and J. N Meegoda, Nano-ozone bubbles for drinking water treatment, Journal of Environmental Engineering and Science, 14 (2019) 57-66. [Back]
  24. J. Cerar, A. Jamnik, I. Pethes, L. Temleitner, L. Pusztai and M. Tomšič, Structural, rheological and dynamic aspects of hydrogen-bonding molecular liquids: Aqueous solutions of hydrotropic tert-butyl alcohol, Journal of Colloid and Interface Science, (2019) Article in press, DOI: https://doi.org/10.1016/j.jcis.2019.10.094; arxiv 1910.03699. [Back]
  25. N. Halib, I. Ahmad, M. Grassi and G. Grassi, The remarkable three-dimensional network structure of bacterial cellulose for tissue engineering applications, International Journal of Pharmaceutics, 566 (2019) 631-640. [Back]  [Back to Top to top of page]
  26. M. Shafiei, N. Ojaghlou, S. G. Zamfir, D. Bratko and A. Luzar, Modulation of structure and dynamics of water under alternating electric field and the role of hydrogen bonding, Molecular Physics, (2019) Article in press, DOI: 10.1080/00268976.2019.1651919. [Back]
  27. V. R. Belosludov, K. V. Gets, R. K. Zhdanov, V. K. Malinovsky, Yu. Yu. Bozhko, R. V. Belosludov, N. V. Surovtsev, O. S. Subbotin and Y. Kawazoe, The nano-structural inhomogeneity of dynamic hydrogen bond network of water, (2019) arxiv 1811/1811.09463. [Back]
  28. L. Labrador-Páez, C. Mingoes, F. Jaque, P. Haro-González, H. Bazin, J. M. Zwier, D.Jaque and N. Hildebrandt, pH dependence of water anomaly temperature investigated by Eu(III) cryptate luminescence, Analytical and Bioanalytical Chemistry, (2019) Article in press, DOI: 10.1007/s00216-019-02215-0. [Back]
  29. P. Yang, Z. Wang, Z. Liang, H. Liang and Y.Yang, A constant potential molecular dynamics simulation study of the atomic- scale structure of water surfaces near electrodes, Chinese Journal of Chemistry, 37 (2019) Article in press, DOI: 10.1002/cjoc.201900270. [Back]
  30. M.-C. Bellissent-Funel, A.Hassanali, M. Havenith, R. Henchman, P. Pohl, F. Sterpone, D. van der Spoel, Y. Xu and A. E Garcia, Water determines the structure and dynamics of proteins, Chemical Reviews, 116 (2016) 7673-7697. [Back]
  31. M. Röhe, A. Botz, D. Franzen, F. Kubannek, B. Ellendorff, D. Öhl, W. Schuhmann, T. Turek and U. Krewer, The key role of water activity for the operating behavior and dynamics of oxygen depolarized cathodes, ChemElectroChem, 6 (2019) 5671-5681. [Back]
  32. B. Journaux, 1, J.M. Brown, A. Pakhomova , I. E. Collings, S. Petitgirard, P. Espinoza, T. B. Ballaran, S. D. Vance, J. Ott, F. Cova, G. Garbarino and M. Hanfland, Holistic approach for studying planetary hydrospheres: Gibbs, elasticity and the water phase diagram to 2300 MPa, Journal of Geophysical Research: Planets, (2019) Article in press, DOI: 10.1029/2019JE006176; B. Journaux, K. Kalousová, C. Sotin, G.Tobie, S. Vance, J. Saur, O. Bollengier, L. Noack, T. Rückriemen-Bez, T. Van Hoolst, K. M. Soderlund and J. M. Brown. Large ocean worlds with high-pressure ices, Space Science Review, 7 (2020) 216. [Back , 2, 3, 4, 5]
  33. C. Hölzl, P. Kibies, S. Imoto, J. Noetzel, M.Knierbeind P. Salmen,M.Paulus, J. Nase, C. Held, G. Sadowski, D. Marx, S. M. Kast and D. Horinek, Structure and thermodynamics of aqueous urea solutions from ambient to kilobar pressures: From thermodynamic modeling, experiments, and first principles simulations to an accurate force field description, Biophysical Chemistry, 254 (2019) 106260. [Back]
  34. L. Canale, J. Comtet, A. Niguès, C. Cohen, C. Clanet, A. Siria and L. Bocquet, Nanorheology of interfacial water during ice gliding, Physical Review X, 9 (2019) 041025; D. Bonn, The physics of ice skating, Nature (2019) DOI: 10.1038/d41586-019-03833-5. [Back]
  35. A. Rakshit, P. Bandyopadhyay, J. P. Heindel and S. S. Xantheas, Atlas of putative minima and low-lying energy networks of water clusters n = 3–25, Journal of Chemical Physics, 151 (2019) 214307. [Back]
  36. L. E. Bove , F. Pietrucci , A. M. Saitta , S. Klotz and J. Teixeira, On the link between polyamorphism and liquid-liquid transition: The case of salty water, Journal of Chemical Physics, 151 (2019) 044503. [Back]
  37. P. Gallo, T. Loerting and F. Sciortino, Supercooled water: A polymorphic liquid with a cornucopia of behaviors, Journal of Chemical Physics, 151 (2019) 210401. [Back]
  38. K. Imrichová, L. Veselý, T. M. Gasser, T. Loerting , V, Neděla and D. Heger, Vitrification and increase of basicity in between ice Ih crystals in rapidly frozen dilute NaCl aqueous solutions, Journal of Chemical Physics, 151 (2019) 014503. [Back]
  39. R. Wang, V. Carnevale, M. L. Klein and E. Borguet, First-principles calculation of water pKa using the newly developed SCAN functional, Journal of Physical Chemistry Letters, 11 (2020) 54-59. [Back]
  40. S. Cai, T. Bai, H. Chen, W. Fang, Z. Xu, H. Lai, T. Huang, H. Xu, X. Chu, J. Ling and C. Gao, Heavy water enables high-voltage aqueous electrochemistry via the deuterium isotope effect, Journal of Physical Chemistry Letters, Energy conversion and storage; Plasmonics and optoelectronics, (2020) Article in press, DOI: 10.1021/acs.jpclett.9b03267. [Back]
  41. W. A. Suwaileh, D. J. Johnson, S. Sarp and N.Hilal, Advances in forward osmosis membranes: Altering the sub-layer structure via recent fabrication and chemical modification approaches, Desalination, 436 (2018) 176-201. [Back]
  42. E. Zürcher, Water in Trees - An essay on astonishing processes, structures and periodicities. Substantia, 3(2) Suppl. 3 (2019) 71-83. DOI: 10.13128/Substantia-507. [Back, 2]
  43. S. Das, S. Imoto, S. Sun, Y. Nagata, E. H. G. Backus and M. Bonn, Nature of excess hydrated proton at the water-air interface, Journal of the American Chemical Society, (2020) Article in press, DOI: 10.1021/jacs.9b10807. [Back]
  44. Colloquium: Ice rule and emergent frustration in particle ice and beyond, A. Ortiz-Ambriz, C. Nisoli , C. Reichhard, C. J. O. Reichhardt and P. Tierno, Reviews of Modern Physics, 91 (2019) 041003. [Back]
  45. S. R. Ghosh, B. Debnath and A. D. Jana, Water dimer isomers: interaction energies and electronic structure, Journal of Molecular Modeling, 26 (2020) 20. [Back]
  46. S. Riahi and C. N. Rowley, Solvation of hydrogen sulfide in liquid water and at the water−vapor interface using a polarizable force field, Journal of Physical Chemistry B , 118 (2014) 1373-1380. [Back]
  47. Z. A. Piskulich and W. H. Thompson, On the temperature dependence of liquid structurem, Journal of Chemical Physics, 152 (2020) 011102. [Back]
  48. Z.-H. Loh, G. Doumy, C. Arnold, L. Kjellsson, S. H. Southworth, A. Al Haddad, Y. Kumagai, M.-F. Tu, P. J. Ho, A. M. March, R. D. Schaller, M. S. Bin Mohd Yusof, T. Debnath, M. Simon, R. Welsch, L. Inhester, K. Khalili, K. Nanda, A. I. Krylov, S. Moeller, G. Coslovich, J. Koralek, M. P. Minitti, W. F. Schlotter, J.-E. Rubensson, R. Santra and L. Young, Observation of the fastest chemical processes in the radiolysis of water, Science, 367 (2020) 179-182. [Back]
  49. A. W. Knight, N. G. Kalugin, E. Coker and A. G. Ilgen, Water properties under nano-scale confinement,Scientific Reports, 9 (2019) 8246. [Back]
  50. S. Schaack, Ph. Depondt, M. Moog, F. Pietrucci and F. Finocchi, How methane hydrate recovers at very high pressure the hexagonal ice structure, Journal of Chemical Physics, 152 (2020) 024504. [Back]  [Back to Top to top of page]
  51. R. Shi and H. Tanaka, Direct evidence in the scattering function for the coexistence of two types of local structures in liquid water, Journal of the American Chemical Society, 142 (2020) 2868-2875. [Back, 2, 3]
  52. C. F. Perry, P. Zhang, F. B. Nunes, I. Jordan, A. von Conta and H. J. Wörner, The ionization energy of liquid water revisited, Journal of Physical Chemistry Letters, (2020) Article in press, DOI: 10.1021/acs.jpclett.9b03391. [Back]
  53. M. Henry, Water and its mysteries, Inference, 4 (2019), https://inference-review.com/article/water-and-its-mysteries, accessed 29/1/2020; see also [3134]. [Back , 2]
  54. Md. S. Azam, C. Cai, J. M. Gibbs, E. Tyrode and D. K. Hore, Silica surface charge enhancement at elevated temperatures revealed by interfacial water signals, Journal of the American Chemical Society, (2020) Article in press, DOI: 10.1021/jacs.9b11710. [Back]
  55. A. Rimola, D. Costa, M. Sodupe, J.-F. Lambert and P. Ugliengo, Silica surface features and their role in the adsorption of biomolecules: Computational modeling and experiments, Chemical Reviews, 113 (2013) 4216-4313. [Back]
  56. A. V. Plyasunov, Thermodynamics of Si(OH)4 in the vapor phase of water: Henry’s and vapor-liquid distribution constants, fugacity and cross virial coefficients, Geochimica et Cosmochimica Acta, 77 (2012) 215-231. [Back]
  57. L. del Rosso, M. Celli, F. Grazzi, M. Catti, T. C. Hansen, A. D.Fortes and L. Ulivi, Cubic ice Ic without stacking defects obtained from ice XVII, Nature Materials, (2020) DOI: 10.1038/s41563-020-0606-y; K. Komatsu, S. Machida, F. Noritake, T. Hattori, A. Sano-Furukawa, R. Yamane, K. Yamashita and H. Kagi, Ice Ic without stacking disorder by evacuating hydrogen from hydrogen hydrate, Nature Communications, 11 (2020) 464; C. G. Salzmann and B. J. Murray, Ice goes fully cubic, Nature Materials, 19 (2020) 581-589. [Back, 2]
  58. M. Kowacz and G. H. Pollack, Moving water droplets: The role of atmospheric CO2 and incident radiant energy in charge separation at the air-water interface, Journal of Physical Chemistry B, 123 (2019) 11003-11013. [Back]
  59. B. Journaux, K. Kalousová, C. Sotin, G. Tobie, S. Vance, J. Saur, O. Bollengier, L. Noack, T. Rückriemen-Bez, T. Van Hoolst, K. M. Soderlund, J. M. Brown, Large ocean worlds with high-pressure ices, Space Science Reviews (Springer Nature), 216 (2020) 7, DOI: 10.1007/s11214-019-0633-7. [Back , 2]
  60. J. M. Brown and B. Journaux, Local-basis function equation of state for ice VII–Xto 450 GPa at 300 K, Minerals, 10 (2020) 92, doi:10.3390/min10020092. [Back]
  61. V. N. Robinson, Y. Wang, Y. Ma and A. Hermann, Stabilization of ammonia-rich hydrate inside icy planets, Proceedings of the National Academy of Sciences, 114 (2017) 9003-9008. [Back]
  62. D. K. Hore and E. Tyrode, Probing charged aqueous interfaces near critical angles: Effect of varying coherence length, Journal of Physical Chemistry C , 123 (2019) 16911-16920. [Back]
  63. M. Imai, Y.Yokota, I. Tanabe, K. Inagaki, Y. Morikawa and K.-i. Fukui, Correlation between mobility and the hydrogen bonding network of water at an electrifiedgraphite electrode using molecular dynamics simulation, Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 10.1039/c9cp06013h. [Back]
  64. Y. Chang, J. Zhou, Z, Luo, Z, Chen, Z, He, S. Yu, L. Che, G. Wu, X. Wang, K. Yuan and X. Yang, Photodissociation dynamics of H2O and D2O via the D˜(1A1) electronic state, Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 10.1039/c9cp05321b. [Back]
  65. Y. Zhou, T. Yamaguchi, K. Ikeda, K. Yoshida, T. Otomo, C. Fang, W. Zhang and F. Zhu, Dihydrogen bonds in aqueous NaBD4 solution by neutron and X‑ray diffraction, Journal of Physical Chemistry Letters, 11 (2020) 1622-1628. [Back]
  66. Wusigale, L. Liang and Y. Luo, Casein and pectin: Structures, interactions, and applications, Trends in Food Science & Technology (2020) Article in press, DOI: 10.1016/j.tifs.2020.01.027. [Back]
  67. M. Peng and A.V. Nguyen, Adsorption of ionic surfactants at the air-water interface: The gap between theory and experiment, Advances in Colloid and Interface Science, 275 (2020) 102052. [Back]
  68. T. T. Duignan, G. K. Schenter, J. L. Fulton, T.Huthwelker, M. Balasubramanian, M. Galib, M. D. Baer, J. Wilhelm, J. Hutter, M. Del Ben, X. S. Zhao and C. J. Mundy, Quantifying the hydration structure of sodium and potassium ions: taking additional steps on Jacob’s Ladder, Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 10.1039/c9cp06161d. [Back]
  69. M. R. Milovanović. J. M. Živković, D. B. Ninković, I. M. Stanković and S. D. Zarić, How flexible is the water molecule structure? Analysis of crystal structures and the potential energy surface, Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 10.1039/c9cp07042g. [Back, 2]
  70. M. Inoue, T. Hayashi, S. Hikiri, M. Ikeguchi and M. Kinoshita, Hydration properties of a protein at low and high pressures: Physics of pressure denaturation, Journal of Chemical Physics, 152 (2020) 065103. [Back]
  71. H. Xu, K. Ithisuphalap, Y. Li, S. Mukherjee, J. Lattimer, G. Soloveichik and G. Wu, Electrochemical ammonia synthesis through N2 and H2O under ambient conditions: Theory, practices, and challenges for catalysts and electrolytes, Nano Energy, (2019) 104469, DOI: 10.1016/j.nanoen.2020.104469. [Back]
  72. A. R. Titus, L. A. Ferreira, A. I. Belgovskiy, E. E. Kooijman, E. K. Mann, J. A. Mann Jr, W. V. Meyer, A. E. Smart, V. N. Uversky and B. Y. Zaslavsky, Interfacial tension and mechanism of liquid–liquid phase separation in aqueous media, Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 10.1039/c9cp05810a. [Back]
  73. R.-X. Gu, S. Baoukina and D. P. Tieleman, Phase separation in atomistic simulations of model membranes
    Journal of the American Chemical Society, (2020) Article in press, DOI: 10.1021/jacs.9b11057. [Back]
  74. F. Merzel and F. Avbelj, Why do water molecules around small hydrophobic solutes form stronger hydrogen bonds than in the bulk? BBA - General Subjects, 1864 (2020) 129537. [Back]
  75. T. R. Fisher, G. Zhou, Y. Shi and L. Huang, How does hydrogen bond network analysis reveal the golden ratio of water–glycerol mixtures? Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 0.1039/c9cp06246g. [Back]  [Back to Top to top of page]
  76. A. Sharma and G. H. Pollack, Healthy fats and exclusion-zone size, Food Chemistry, 316 (2020) 126305. [Back]
  77. A. Zaragoza, C. S. P. Tripathi, M. A.Gonzalez, J. L. F. Abascal, F. Caupin and C. Valeriani, Effect of dissolved salt on the anomalies of water at negative pressure, Journal of Chemical Physics, 152, (2020) 194501; arXiv:2001.10754v1 [physics.chem-ph] 29 Jan 2020. [Back]
  78. T. Xu, X. Bin, S. R. Kirk, D. J. Wales and S. Jenkins, Flip rearrangement in the water pentamer: Analysis of electronic structure, International Journal of Quantum Chemistry, (2019) e26124. [Back]
  79. M. Pagliai, G. Funghi, D. Vassetti, P. Procacci, R. Chelli and G. Cardini, Imidazole in aqueous solution: Hydrogen bond interactions and structural reorganization with concentration, Journal of Physical Chemistry B , 123 (2019) 4055-4064. [Back]
  80. F. Meyer, M. Blum, A. Benkert, D. Hauschild, Y. L. Jeyachandran, R. G. Wilks, W. Yang, M. Bär, F. Reinert, C. Heske, M. Zharnikov and L. Weinhardt, Site-specific electronic structure of imidazole and imidazolium in aqueous solutions†Physical Chemistry Chemical Physics, 20 (2018) 8302-8310. [Back]
  81. L. H. Al-Madhagi, S. K. Callear and S. L. M. Schroeder, Hydrophilic and hydrophobic interactions in concentrated aqueous imidazole solutions: a neutron diffraction and total X-ray scattering study, Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 10.1039/c9cp05993h. [Back]
  82. B. Jagoda-Cwiklik, P. Slavíček, L, Cwiklik, D. Nolting, B. Winter and P. Jungwirth, Ionization of imidazole in the gas phase, microhydrated environments, and in aqueous solution, Journal of Physical Chemistry A,  112 (2008) 3499-3505. [Back]
  83. M. D. Green and T. E. Long, Designing imidazole-based ionic liquids and ionic liquid monomers for emerging technologies, Polymer Reviews, 49 (2009) 291-314. [Back]  
  84. H. Laurent, A. K. Soper and L. Dougan, Trimethylamine N-oxide (TMAO) resists the compression of water structure by magnesium perchlorate: terrestrial kosmotrope vs. Martian chaotrope, Physical Chemistry Chemical Physics, (2020) Article in press, DOI: 10.1039/c9cp06324b. [Back]  
  85. E. Raamat, K.Kaupmees, G. Ovsjannikov, A. Trummal, A. Kütt, J. Saame, I. Koppel, I. Kaljurand, L. Lipping, T. Rodima, V. Pihl, I. A. Koppel and I. Leito, Acidities of strong neutral Brønsted acids in different media, Journal of Physical Organic Chemistry, (2012) Article in press, https://doi.org/10.1002/poc.2946. [Back]  
  86. (a) P. Ayotte, M. Hébert and P. Marchand, Why is hydrofluoric acid a weak acid? The Journal of Chemical Physics, 123 (2005) 184501; (b) L. Pauling, Why is hydrofluoric acid a weak acid? Journal of Chemical Education, 53 (1956) 16-17. [Back]
  87. J. C. McCoubrey, The acid strength of the hydrogen halides, Transactions of the Faraday Society, 51 (1955) 743-747. [Back]
  88. (a) R. T. Myers, The strength of the hydrohalic acids, Journal of Chemical Education, 53 (1976) 17-19; (b) L. Pauling, Strength of hydrohalogenic acids, Journal of Chemical Education, 53 (1976) 762-763; (c) T. Myers, Hydrogen halides and hydrogen bonds, Inorganic Chemistry, 16 (1977) 2671-2674. [Back]
  89. A. V. Levanov, U. D. Gurbanova, O. Ya. Isaikina, and V. V. Lunin, Dissociation constants of hydrohalic acids HCl, HBr, and HI in aqueous solutions, Russian Journal of Physical Chemistry A, 93 (2019) 93-101; original Russian text Zhurnal Fizicheskoi Khimii, 93 (2019) 86-94. [Back]
  90. H. H. Hyman, M. Kilpatrick and J. J. Katz, The Hammett acidity function H 0 for hydrofluoric acid solutions, Journal of the American Chemical Society, 79 (1957) 3668-3671; G. Dalllnga, J. Gaaf and E. L. Mackor, H 0 data and other properties of some hydrogen fluoride based solvents, Recueil des Travaux Chimiques des Pays-Bas, 89 (1970) 1068-1078, https://doi.org/10.1002/recl.19700891009. [Back]
  91. C. Kritayakornupong, V. Vchirawongkwin, T. S. Hofer and B. M. Rode, Structural and dynamical properties of hydrogen fluoride in aqueous solution: An ab initio quantum mechanical charge field molecular dynamics simulation, Journal of Physical Chemistry B  112 (2008) 12032-12037. [Back]
  92. T, Joutsuka and K. Ando, Hydration structure in dilute hydrofluoric acid, Journal of Physical Chemistry A, 115 (2011) 671-677. [Back]
  93. A. J. Sillanpa1a1, C. Simon, M. L. Klein and K. Laasonen, Structural and spectral properties of aqueous hydrogen fluoride studied using ab Initio molecular dynamics, Journal of Physical Chemistry B, 106 (2002) 11315-11322. [Back]
  94. M. Riera, E. Lambros, T. T. Nguyen, A. W. Götz and F. Paesani, Low-order many-body interactions determine the local structure of liquid water, Chemical Science, 10 (2019) 8211-8218. [Back]
  95. S. Odde, B. J. Mhin, S. Lee, H. M. Lee and K. S. Kim, Dissociation chemistry of hydrogen halides in water, Journal of Chemical Physics, 120 (2004) 9524-9535. [Back]
  96. J. Heinz and D. Schulze-Makuch, Thiophenes on Mars: Biotic or abiotic origin? Astrobiology, 20 (4) (2020) DOI: 10.1089/ast.2019.2139. [Back]
  97. J. S. Rego and M. de Koning, Density-functional theory prediction of the elastic constants of ice Ih, Journal of Chemical Physics, 152 (2020) 084502. [Back]
  98. T. Mohoriĉa and U. Brena, How does microwave irradiation affect the mechanism of water reorientation? Journal of Molecular Liquids, 302 (2020) 112522. [Back]
  99. G. Colherinhas, L. B. A. Oliveira, M. A. Castro, T. L. Fonseca, K. Coutinho and S. Canuto, On the calculation of magnetic properties of nucleic acids in liquid water with the sequential QM/MM method, Journal of Molecular Liquids, 294 (2019) 111611. [Back]
  100. J. Yang, Y. Wang, R. Yin, J. Pang, Y. Cong and S. Yang, Water molecule attachment mode on the dried polysaccharide influences its free radical scavenging ability, Process Biochemistry, (2020) Article in press, DOI: 10.1016/j.procbio.2019.11.028. [Back]


 

 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2019 and last updated by Martin Chaplin on 5 September, 2022


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License