Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
 Go to my page Water Structure and Science

Water Structure and Science, References 2701 - 2800


  1. M. Michelin-Jamois, C. Picard, G. Vigier and E. Charlaix, Giant osmotic pressure in the forced wetting of hydrophobic nanopores, Physical Review Letters 115 (2015) 036101. [Back]
  2. B. Sulbarán, G. Toriz, G. G. Allan, G. H. Pollack and E. Delgado, The dynamic development of exclusion zones on cellulosic surfaces, Cellulose 21 (2014) 1143-1148. [Back]
  3. T. A. L. Burgo, F. Galembeck and G. H. Pollack, Where is water in the triboelectric series? J. Electrostatics 80 (2016) 30-33. [Back, 2]
  4. K. W Kimura and G. H. Pollack, Particle displacement in aqueous suspension arising from incident radiant energy, Langmuir, Langmuir, 31 (2015) 10370-10376. [Back]
  5. M. J. Stevens and K. Kremer, The nature of flexible linear polyelectrolytes in salt free solution: A molecular dynamics study, Journal of Chemical Physics,103 (1995) 1669-1690. [Back]
  6. A. Nilsson, S. Schreck, F. Perakis and L. G. M. Pettersson, Probing water with X-ray lasers, Advances in Physics X, 1:2 (2016) 226-245. [Back]
  7. A. P. Nutman, V. C. Bennett, C. R. L. Friend, M. J. Van Kranendonk and A. R. Chivas, Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures, Nature, 537 (2016) 535-538. [Back]
  8. G. Cooper, and A. C. Rios, Enantiomer excesses of rare and common sugar derivatives in carbonaceous meteorites, Proceedings of the National Academy of Sciences, 113 (2016)  E3322–E3331. [Back]
  9. A. H. Ayyad, Test of the des Cloiseaux law by membrane osmometry on pullulan, Macromolecular Rapid Communications, 22, (2001) 652-653. [Back]
  10. (a) J. des Cloizeaux, The Lagrangian theory of polymer solutions at intermediate concentrations, Journal of Physics France, 36 (1975) 281-291;(b) J. A. Cohen, R. Podgornik, P. L. Hansen and V. A. Parsegian, A phenomenological one-parameter equation of state for osmotic pressures of PEG and other neutral flexible polymers in good solvents, Journal of Physical Chemistry B, 113 (2009) 3709-3714; (c) L. Wang and V. A. Bloomfield, Osmotic pressure of polyelectrolytes without added salt, Macromolecules, 23 (1990) 804-809. [Back]
  11. S. Chatterjee, A symbiotic view of the origin of life at hydrothermal impact crater-lakes, Physical Chemistry Chemical Physics, 18 (2016) 20033-20046. [Back]
  12. L. Comez, M. Paolantoni, P. Sassi, S. Corezzi, A. Morresi and D. Fioretto, Molecular properties of aqueous solutions: a focus on the collective dynamics of hydration water, Soft Matter 12 (2016) 5501-5514. [Back]
  13. C. J. Sahle, M. A. Schroer, I. Juurinend and J. Niskanend, Influence of TMAO and urea on the structure
    of water studied by inelastic X-ray scattering, Physical Chemistry Chemical Physics, 18 (2016) 16518-16526; D. R. Canchi and A. E. Garcíıa, Cosolvent effects on protein stability, Annual Review of Physical Chemistry 64 (2013) 273-293; C. J. Sahle, M. A. Schroer, J. Niskanen,, M. Elbers, C. M. Jeffries and C. Sternemann, Hydration in aqueous osmolyte solutions: the case of TMAO and urea, Physical Chemistry Chemical Physics, 22 (2020) 11614-11624. [Back]
  14. E. Y.. Gatapova, I. A. Graur, O. A. Kabov, V. M. Aniskin, M. A. Filipenko, F. Sharipov and L. Tadrist, The temperature jump at water – air interface during evaporation, Intrnational Journal of Heat and Mass Transfer, 104 (2017) 800-812. [Back, 2]
  15. I. Bergonzi, L.l Mercury, P. Simon, F. Jamme and K. l Shmulovich, Oversolubility in the microvicinity of solid–solution interfaces, Physical Chemistry Chemical Physics, 18 (2016) 14874-14885. [Back]
  16. D. J. Huggins, Studying the role of cooperative hydration in stabilizing folded protein states, Journal of Structural Biology, 196 (2016) 394-406. [Back]
  17. E. L. Lindh, M. Bergenstråhle-Wohlert, C. Terenzi, L. Salmén and I. Furó, Nonexchanging hydroxyl groups on the surface of cellulose fibrils: The role of interaction with water, Carbohydrate Research, 434 (2016) 136-142. [Back]
  18. R. K. Lam, J. W. Smith and R. J. Saykally, Communication: hydrogen-bonding interactions in water-alcohol mixtures from Xray absorption spectroscopy, Journal of Chemical Physics,144 (2016) 191103. [Back]
  19. W. T. S. Cole, R. S. Fellers, M. R. Viant, C. Leforestier and R. J. Saykally, Far-infrared VRT spectroscopy of the water dimer: Characterization of the 20 μm outof- plane librational vibration, Journal of Chemical Physics, 143 (2015) 154306. [Back]
  20. F. S. Cipcigan, V. P. Sokhan, J. Crain and G. J. Martyna, Electronic coarse graining enhances the predictive power of molecular simulation allowing challenges in water physics to be addressed. Journal of Computational Physics, 326 (2016) 222-233; arXiv:1609.03077v1 [physics.chem-ph] 10 Sep 2016. [Back]
  21. (a) A. Azevedo, R. Etchepare, S. Calgaroto and J. Rubio, Aqueous dispersions of nanobubbles: Generation, properties and features, Minerals Engineering, 94 (2016) 29-37; (b) Z. A. Zhou, Comment on “Aqueous dispersions of nanobubbles: Generation, properties and features“ by A. Azevedo, R. Etchepare, S. Calgaroto, J. Rubio [Miner.
    Eng. 94 (2016) 29–37], Minerals Engineering, 117 (2018) 117-120. [Back]
  22. S. Izadi and A. V. Onufriev, Accuracy limit of rigid 3-point water models, Journal of Chemical Physics, 145 (2016) 074501. [Back]
  23. M. Senske, D. Constantinescu-Aruxandei, M. Havenith, C. Herrmann, H. Weingärtner and S. Ebbinghaus, The temperature dependence of the Hofmeister series: thermodynamic fingerprints of cosolute–protein interactions, Physical Chemistry Chemical Physics, 18 (2016) 29698-29708. [Back]
  24. M. V. Kirov, Antisymmetry and stability of water systems. I. Planar cyclic clusters, M. V. Kirov, Journal of Struct. Chem. 48 (2007) 81-87. [Back]
  25. A. C. Fogarty and D. Laage, Water dynamics in protein hydration shells: The molecular origins of the dynamical perturbation, Journal of Physical Chemistry B 118 (2014) 7715−7729. [Back]  [Back to Top to top of page]
  26. M. Mandziuk, On the tunneling splitting in a cyclic water trimer, Chemical Physics Letters, 661 (2016) 263-268. [Back, 2]
  27. L. Zhao, K. Ma and Z. Yang, Changes of water hydrogen bond network with different externalities, International Journal of Molecular Sciences, 16 (2015) 8454-8489. [Back, 2]
  28. V. V. Goncharuk, E. A. Orekhova, M. D. Skil’skaya and A. A. Kavitskaya, The use of cryoscopy method for determination of freezing temperature of waters having different content of deuterium, Journal of Water Chem. Technol. 37 (2015) 103-107; originally in Khim. Tekhnol.Vody 37 (2015) 197-206. [Back]
  29. L. Biedermannová and B. Schneider, Hydration of proteins and nucleic acids: Advances in experiment and theory. A review, BBA - General Subjects, 1860 (2016) 1821-1835. [Back]
  30. M. D. Shoulders and R. T. Raines, Collagen structure and stability, Annual Review of Biochemistry, 78 (2009) 929-958; C. Domene, C. Jorgensen and S. W. Abbasi, A perspective on structural and computational work on collagen, Physical Chemistry Chemical Physics, 18 (2016) 24802; W Wagermaier and P Fratzl, Collagen, in Polymer Science: A Comprehensive Reference, Volume 9, Ed. K. Matyjaszewski and M. Möller, Elsevier (2012) pp 35-55, doi:10.1016/B978-0-444-53349-4.00247-8. [Back]
  31. Z. Wu, G. Hua, K. Wang, B. Yu. Zaslavsky, L. Kurgan and V. N. Uversky, What are the structural features that drive partitioning of proteins in aqueous two-phase systems? Biochimica et Biophysica Acta, 1865 (2017)113-120. [Back]
  32. O. Miyawaki, M. Dozen and K. Hirota, Cooperative hydration effect causes thermal unfolding of proteins and water activity plays a key role in protein stability in solutions, Journal of Biosci. Bioeng.122 ( 2016) 203-207. [Back]
  33. D. T. Limmer, A. P. Willard,1, P. Madden and D. Chandler, Hydration of metal surfaces can be dynamically heterogeneous and hydrophobic, Proceedings of the National Academy of Sciences, 110 (2013) 4200-4205. [Back]
  34. A. Hodgson and S. Haq, Water adsorption and the wetting of metal surfaces, Surface Science Reports, 64 (2009) 381-451. [Back]
  35. A. Michaelides, Density functional theory simulations of water–metal interfaces: waltzing waters, a novel 2D ice phase, and more, Appl. Phys. A 85 (2006) 415-425. [Back]
  36. D. T. Limmer, A. P. Willard, P. A. Madden and D. Chandler, Water exchange at a hydrated platinum electrode is rare and collective, Journal of Physical Chemistry C, 119 (2015) 24016-24024. [Back]
  37. T. R. Rogers, K.-Y. Leong and F. Wang, Possible evidence for a new form of liquid buried in the surface tension of supercooled water, Scientific Reports 6 (2016) 33284. [Back, 2]
  38. M. Matsumoto, T. Yagasaki and H. Tanaka, Chiral ordering in supercooled liquid water and amorphous ice
    Physical Review Letters 115 (2015) 197801. [Back]
  39. J. Guo, X. Meng, J. Chen, J. Peng, J. Sheng, X.-Z. Li, L. Xu, J.-R. Shi, E. Wang and Y. Jiang, Real-space imaging of interfacial water with submolecular resolution, Nature, Mater. 13 (2014) 184-189. [Back]
  40. J. Carrasco, A. Michaelides and M. Scheffler, Insight from first principles into the nature of the bonding between water molecules and 4d metal surfaces, Journal of Chemical Physics,130 (2009) 184707; L. G. M. Pettersson and A. Nilsson, A molecular perspective on the d-band model: synergy between experiment and theory Topics Catalysis 57 (2014) 2-13. [Back]
  41. J. C. del Valle, E. Camarillo, L. M. Maestro, J. A. Gonzalo, C. Aragó, M. Marqués, D. Jaque, G. Lifante, J. G. Solé, K. Santacruz-Gómez, R. C. Carrillo-Torres and F. Jaque, Dielectric anomalous response of water at 60 °C, Philosophical Mag. 95 (2015) 683-690. [Back]
  42. S. Maeda, H. Kobayashi, K. Ida, M. Kashiwa, I. Nishihara and T. Fujita, The effect of dilution on the quantitative measurement of bubbles in high-density ultrafine bubble-filled water using the light scattering method, International Conf. Optical Particle Characterization (OPC 2014), ed. N. Aya, N. Iki, T. Shimura and T. Shirai, Proc. of SPIE 9232 (2014) 92320V, doi:.10.1117/12.2064810. [Back]
  43. H. Kobayashi, S. Maeda, M. Kashiwa and T. Fujita, Measurements of ultrafine bubbles using different types of
    particle size measuring instruments, International Conf. Optical Particle Characterization (OPC 2014), ed. N. Aya, N. Iki, T. Shimura and T. Shirai, Proc. of SPIE 9232 (2014) 92320U, doi:.10.1117/12.2064638. [Back]
  44. S. O. Yurchenko, A. V. Shkirin, B. W. Ninham, A. A. Sychev, V. A. Babenko, N. V. Penkov, N. P. Kryuchkov and N. F. Bunkin, Ion-specific and thermal effects in the stabilization of the gas nanobubble phase in bulk aqueous electrolyte solutions, Langmuir, 32 (2016) 11245-11255. [Back]
  45. M. Alheshibri, J. Qian, M. Jéhannin,and V. S. J. Craig, A history of nanobubbles, Langmuir, 32 (2016) 11086-11100; E. D. Michailidi, G. Bomis, A. Varoutoglou, E. K. Efthimiadou, A. C. Mitropoulos and E. P. Favvas, Fundamentals and applications of nanobubbles (Chapter 4), Interface Science and Technology, 30 (2019) 69-99; DOI: 10.1016/B978-0-12-814178-6.00004-2. [Back]
  46. M. Zhang and J. R. T. Seddon, Nanobubble−nanoparticle interactions in bulk solutions, Langmuir, 32 (2016) 11280-11286. [Back]
  47. P. Attard, Pinning down the reasons for the size, shape, and stability of nanobubbles, Langmuir, 32 (2016) 11138-11146. [Back]
  48. D. Jing, D. Li, Y. Pan and B. Bhushan, Surface charge-induced EDL interaction on the contact angle of surface nanobubbles, Langmuir, 32 (2016) 11123-11132. [Back]
  49. H. N. Morse and J. C. W. Frazer, The osmotic pressure and freezing-points of soiutions of cane-sugar, American Chemical Journal (Baltimore), 34 (1905) 1-99. [Back]
  50. W. R. Bousfield, Osmotic pressure in relation to the constitution of water and the hydration of the solute, Trans. Faraday Soc.13 (1917) 141-155. [Back, 2, 3] [Back to Top to top of page]
  51. J. C. Henniker, The depth of the surface zone of a liquid, Reviews of Modern Physics, 21 (1949) 322-341; P. P. Olodovskii and I. L. Berestova, On changes in the structure of water due to its contact with a soild phase, I NMR-spectroscopy studies, Journal of Engineering Physics and Thermophysics, 62 (1992) 622-627, Translated from Inzhenerno-Fizicheskii Zhurnal, 62 (1992) 853-858. [Back, 2]
  52. J. I. Vílchez, C. García-Fontana, D.Román-Naranjo, J. González-López and M. Manzanera, Plant drought tolerance enhancement by trehalose production of desiccation-tolerant microorganisms. Fronteirs of Microbiology, 7 (2016) 1577. DOI: 10.3389/fmicb.2016.01577. [Back]
  53. L. A. Bagatolli and R. P. Stock, The cell as a gel: materials for a conceptual discussion, Physiological Mini Review, 9 (2016) 38-49. [Back]
  54. S. Pöyry and I. Vattulainen, Role of charged lipids in membrane structures - Insight given by simulations, Biochimica et Biophysica Acta, 1858 (2016) 2322-2333. [Back]
  55. L. M. Maestro, M. I. Marqués, E. Camarillo, D. Jaque, J. G. Solé, J. A. Gonzalo, F. Jaque, J. C. del Valle, F. Mallamace and H. E. Stanley, On the existence of two states in liquid water: impact on biological and nanoscopic systems, International Journal of Nanotechnol. 13 (2016) 667-677. [Back, 2, 3, 4, 5]
  56. M. L. V. Ramires, C. A. Nieto de Castro, Y. Nagasaka, A. Nagashima, M. J. Assael and W. A. Wakeham, Standard reference data for the thermal conductivity of water, Journal of Physical Chemistry Reference Data, 24 (1995) 1377-1381. [Back]
  57. L. S. Shraiber, Experimental investigation ofthe thermal dependence of the piezo-optical coefficient of water between 5 and 90°C, Israel Journal of Chem. 13 (1975) 181-184. [Back]
  58. U. Ranieri, P. Giura, F. A. Gorelli, M. Santoro, S. Klotz, P. Gillet, L. Paolasini, M. M. Koza and L. E.Bove, Dynamical crossover in hot dense water: The hydrogen bond role, Journal of Physical Chemistry B, 120 (2016) 9051-9059. [Back]
  59. A. H. Persad and C. A. Ward, Expressions for the evaporation and condensation coefficients in the Hertz-Knudsen relation, Chemical Reviews, 116 (2016) 7727-7767. [Back]
  60. R. Marek and J. Straub, Analysis of the evaporation coefficient and the condensation coefficient of water, International Journal of Heat Mass Transfer, 44 (2001) 39-53. [Back]
  61. Y. Chong, A. Kleinhammes and Y. Wu, Protein dynamics and thermodynamics crossover at 10°C: different roles of hydration at hydrophilic and hydrophobic groups, Chemical Physics Letters, 664 (2016) 108-113. [Back]
  62. Y. Liu and J. Wu, Communication: Long-range angular correlations in liquid water, Journal of Chemical Physics,139 (2013) 041103. [Back]
  63. A. Henao, S. Busch, E. Guardia, J. L. Tamarita and L. C. Pardo, The structure of liquid water beyond the first
    hydration shell, Physical Chemistry Chemical Physics, 18 (2016) 19420-19425. [Back]
  64. C. C. M. Groot, K. P. Velikov and H. J. Huib, Structure and dynamics of water molecules confined in triglyceride oils, Physical Chemistry Chemical Physics, 18 (2016) 29361-29368. [Back]
  65. K. Simons, Cell membranes: A subjective perspective, Biochim. Biophys.Acta 1858 (2016) 2569-2572. [Back]
  66. M. Pasenkiewicz-Gierula, K. Baczynski, M. Markiewicz and K. Murzyn, Computer modelling studies of the bilayer/water interface, Biochim. Biophys.Acta 1858 (2016) 2305-2321. [Back]
  67. E. A. Disalvo, Ed. Membrane hydration The role of water in the structure and function of biological membranes, (Springer, 2015) ISSN 0306-0225. [Back]
  68. C. Andreani, G. Romanelli and R. Senesi, Direct measurements of quantum kinetic energy tensor in stable and metastable water near the triple point: An experimental benchmark, Journal of Physical Chemistry Letters, 7 (2016) 2216-2220. [Back]
  69. L. Dougan, R.Hargreaves,S. P. Bates, J. L. Finney, V.Reat, A. K. Soper and J. Crain, Segregation in aqueous methanol enhanced by cooling and compression. Journal of Chemical Physics,122 (2005) 174514-174517. [Back]
  70. J. J. Towey, A. K. Soper and L. Dougan, Low density water structure observed in a nano-segregated cryoprotectant solution at low temperatures from 285 K to 238 K, Journal of Physical Chemistry B, 120 (2016) 4439-4448.. [Back]
  71. S. Wciślik, Thermal infrared mapping of the Leidenfrost drop evaporation, Journal of Physics Conference Series, 745 (2016) 032064. [Back]
  72. E. Buxbaum, Transport of solutes across membranes, In: Fundamentals of protein structure and function, (Springer, Switzerland, 2015) doi 10.1007/978-3-319-19920-7_18, pp 421-468. [Back]
  73. T. A. Strobel, M. S Somayazulu, S. V. Sinogeikin, P. Dera and R. J. Hemley, Hydrogen-stuffed, quartz-like water ice, Journal of the American Chemical Society, 138 (2016) 13786-13789. [Back, 2].
  74. A. V. Khakhalin and O. N. Gradoboeva, Investigation of the chiral properties of configurations of (H2O)n, K+(H2O)m, and Na)m(H2O)m (n = 4–8, m = 5–10) small water clusters at 1 K, Moscow University Physics Bulletin (Allerton Press) 71 (2016) 413-419. Original Russian, A. V. Khakhalin and O. N. Gradoboeva, Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, (2016) 4, 76-82. [Back]
  75. J. M. Rodgers and T. Ichiye, Multipole moments of water molecules and the aqueous solvation of monovalent ions, Journal of Molecular Liquids, 228, (2017) 54-62. [Back] [Back to Top to top of page]
  76. E. Duboué-Dijon, A. C. Fogarty, J. T. Hynes and D. Laage, Dynamical disorder in the DNA hydration shell, Journal of the American Chemical Society, 138 (2016) 7610-7620. [Back]
  77. S. D. Bernardina, E. Paineau, J.-B. Brubach, P. Judeinstein, S. Rouzière, P. Launois and P. Roy, Water in carbon nanotubes: the peculiar hydrogen bond network revealed by infrared spectroscopy, Journal of the American Chemical Society, 138 (2016) 10437-10443. [Back]
  78. A. M. Rizzuto, S. Irgen-Gioro, A. Eftekhari-Bafrooei and R.J. Saykally, Broadband deep UV spectra of interfacial aqueous iodide, Journal of Physical Chemistry Letters, 7 (2016) 3882-3885. [Back]
  79. N. Shukla, E. Pomarico, L. Chen, M. Chergui and C. M. Othon, Retardation of bulk water dynamics by disaccharide osmolytes, Journal of Physical Chemistry B, 120 (2016) 9477-9483. [Back]
  80. C. Olsson, H. Jansson and J. Swenson, The role of trehalose for the stabilization of proteins, Journal of Physical Chemistry B, 120 (2016) 4723-4731. [Back]
  81. K. Haider, L. Wickstrom, S. Ramsey, M.K. Gilson and K. Thomas, Enthalpic breakdown of water structure on protein active-site surfaces, Journal of Physical Chemistry B, 120 (2016) 8743-8756. [Back]
  82. M. Chen, X. Lin, W. Zheng, J. N. Onuchic and P. G. Wolynes, Protein folding and structure prediction from the ground up: The atomistic associative memory, water mediated, structure and energy model (AAWSEM), Journal of Physical Chemistry B, 120 (2016) 8557–8565. [Back]
  83. V. R. Hande and S. Chakrabarty, Exploration of the presence of bulk-like water in AOT reverse micelles and water-in-oil nanodroplets: the role of charged interfaces, confinement size and properties of water, Physical Chemistry Chemical Physics, 18 (2016) 21767. [Back]
  84. D. Porschke, Boundary conditions for free A‑DNA in solution and the relation of local to global DNA structures at reduced water activity, Eur. Biophysical Journal, 45 (2016) 413-421. [Back]
  85. Y. Tong, T. Kampfrath and R. K. Campen, Experimentally probing the libration of interfacial water: the rotational potential of water is stiffer at the air/water interface than in bulk liquid, Physical Chemistry Chemical Physics, 18 (2016) 18424-18430; arXiv:1711.09764v1 [physics.chem-ph] 27 Nov 2017. [Back]
  86. V. I. Roldughin and T. V. Kharitonova, Osmotic pressure or decompression? Colloid Journal, 77 2015) 787-794; Original Russian, Kolloidnyi Zh. 77 (2015) 783–791. [Back]
  87. G. Murdachaew, G. M. Nathanson, R. B. Gerber and L. Halonen, Deprotonation of formic acid in collisions with a liquid water surface studied by molecular dynamics and metadynamics simulations, Physical Chemistry Chemical Physics, 18 (2016) 29756-29770. [Back]
  88. R. H. Tromp, R. Tuinier and M. Vis, Polyelectrolytes adsorbed at water-water interfaces, Physical Chemistry Chemical Physics, 18 (2016) 30931-30939. [Back]
  89. O. Fisette, C. Päslack, R. Barnes, J. M. Isas, R. Langen, M. Heyden, S. Han and L. V. Schäfer, Hydration dynamics of a peripheral membrane protein, Journal of the American Chemical Society, 138 (2016) 11526-11535. [Back]
  90. K. Green and T. Otori, Direct measurements of membrane unstirred layer, Journal of Physiology, 207 (1970) 93-102. [Back]
  91. M. Michelin-Jamois, C. Picard, G. Vigier and E. Charlaix, Giant osmotic pressure in the forced wetting of hydrophobic nanopores, Physical Review Letters 115 (2015) 036101. [Back]
  92. (a) B. Chai, A. G. Mahtani and G. H. Pollack, Unexpected presence of solute-free zones at metal-water interfaces. Contemp Mater. 3 (2012) 1-12; (b) F. Musumecia and G. H. Pollack, High electrical permittivity of ultrapure water at the water–platinum interface, Chemical Physics Letters, 613 (2014) 19-23; (c) H. Yoo, R. Paranji and G. H. Pollack, Impact of hydrophilic surfaces on interfacial water dynamics probed with NMR spectroscopy, Journal of Physical Chemistry Letters, 2 (2011) 532-536. [Back]
  93. V. Tychinsky, High electric susceptibility is the signature of structured water in water-containing objects, WATER 3 (2011) 95-99, DOI: 10.14294/WATER.2011.8. [Back]
  94. J. W. Biddle, V. Holten and M. A. Anisimov, Behavior of supercooled aqueous solutions stemming from hidden liquid–liquid transition in water, Journal of Chemical Physics,141 (2014) 074504. [Back]
  95. C. E. Neuzil and A. M. Provost, Recent experimental data may point to a greater role for osmotic pressures in the subsurface, Water Resources Research, 45 (2009) W03410, doi:10.1029/2007WR006450. [Back]
  96. L. del Rosso, M. Celli and L. Ulivi, New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice, Nature Communications, 7 (2016) 13394; L. del Rosso, F. Grazzi, M. Celli, D. Colognesi, V. Garcia-Sakai, and L. Ulivi, Refined structure of metastable ice XVII from neutron diffraction measurements, Journal of Physical Chemistry C, 120 (2016) 26955-26959. [Back, 2, 3, 4, 5]
  97. S.-H. Chong and S. Ham, Anomalous dynamics of water confined in protein−protein and protein−DNA interfaces, Journal of Physical Chemistry Letters, 7 (2016) 3967-3972. [Back]
  98. J. M. Guevara-Vela, E. Romero-Montalvo, V. A. M. Gómez, R. Chávez-Calvillo, M. García-Revilla, E. Francisco, A. M. Pendás and T. Rocha-Rinza, Hydrogen bond cooperativity and anticooperativity within the water hexamer, Physical Chemistry Chemical Physics, 18 (2016 ) 19557-19566; V. M. Castor-Villegas, J. M.Guevara-Vela, W. E. V. Narváez, A. M. Pendás, T. Rocha-Rinza, A. Fernández-Alarcón, On the strength of hydrogen bonding within water clusters on the coordination limit, Journal of Computational Chemistry, (2020) 1-12. [Back]
  99. I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov and G. Yushin, A major constituent of brown agae for use in high-capacity Li-ion batteries, Science, 334 (2011) 75-79. [Back]
  100. S. Iwata, D. Akase, M. Aida and S. S. Xantheas, Electronic origin of the dependence of hydrogen bond strengths on nearest-neighbor and next-nearest-neighbor hydrogen bonds in polyhedral water clusters (H2O)n, n = 8, 20 and 24, Physical Chemistry Chemical Physics, 18 (2016) 19746-19756. [Back]  [Back to Top to top of page]


Home | Site Index | Site Map | Search | LSBU | Top


This page was established in 2016 and last updated by Martin Chaplin on 15 September, 2021

Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License