Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Water Structure and Science, References 2201 - 2300


  1. F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, C. Vasi and H. E. Stanley, Thermodynamic properties of bulk and confined water, Journal of Chemical Physics,141 (2014) 18C504; F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, C. Vasi and H. E. Stanley, Erratum: Thermodynamic properties of bulk and confined water, [Journal of Chemical Physics,141 (2014) 18C504] Journal of Chemical Physics, 141 (2014) 249903. [Back]
  2. E. Ronca, L. Belpassi and F. Tarantelli, A quantitative view of charge transfer in the hydrogen bond: the water dimer case, ChemPhysChem 15 (2014) 2682-2687. [Back]
  3. L. I. Cleeves, E. A. Bergin, C. M. O’D. Alexander, F. Du, D. Graninger, K. I. Öberg and T. J. Harries, The ancient heritage of water ice in the solar system, Science, 345 (2014) 1590-1593. [Back]
  4. A. V. Ildyakov, A. Yu. Manakov, E. Ya. Aladko, V. I. Kosyakov and V. A. Shestakov, Solubility of helium in ice Ih at pressures up to 2000 bar, Journal of Physical Chemistry B 117 (2013) 7756-7762. [Back]
  5. A. V. Ildyakov and A. Yu. Manakov, Solubility of hydrogen in ice Ih at pressures up to 8 MPa, International Journal of Hydrogen Energy, 39 (2014) 18958-18961. [Back]
  6. Y. Marcus, Concentration dependence of ionic hydration numbers, Journal of Physical Chemistry B 118 (2014) 10471-10476. [Back]
  7. A. I. Konovalov, I. S. Ryzhkina, L. I. Murtazina and Yu. V. Kiseleva, Forming the nanosized molecular assemblies (nanoassociates) is a key to understand the properties of highly diluted aqueous solutions, Biophysics 59 (2014) 341-346; Biofizika 59 (2014) 421-427; A. I. Konovalov and I. S. Ryzhkina, Formation of nanoassociates as a key to understanding of physicochemical and biological properties of highly dilute aqueous solutions, Russian Chemhemistry Bulletin International Ed., 63 (2014) 1-14; S. M. Pershin, Konovalov effect in low-concentration aqueous solutions: the role of ortho/para spin isomers, Dokl. Physical Chemistry 455 (2014) 37-40; Dokl. Akad. Nauk 455 (2014) 44-47. [Back]
  8. H. Parmar, M. Asada, Y. Kanazaw, Y. Asakuma, C.M. Phan, V. Pareek and G. M. Evans, Influence of microwaves on the water surface tension, Langmuir, 30 (2014) 9875-9879;M. T. Amiri and M. C. Amiri, Comment on “Influence of microwaves on the water surface tension”, Langmuir, 31 (2015) 10931-10932; H. Parmar, M. Asada, Y. Kanazaw, Y. Asakuma, C.M. Phan, V. Pareek and G. M. Evans, Reply to comment on “Influence of microwaves on the water surface tension”, Langmuir, 31 (2015) 10933-10934. [Back, 2, 3
  9. T. Loerting, V. Fuentes-Landete, P. H. Handle a, M. Seidl, K. Amann-Winkel, C. Gainaru and R. Böhmer, The glass transition in high-density amorphous ice, Journal of Non-Crystalline Solids, 407 (2014) 423-430. [Back]
  10. B. E. Rocher-Casterline, L. C. Ch’ng, A. K. Mollner and H. Reisler, Determination of the bond dissociation energy (D0) of the water dimer, (H2O)2, by velocity map imaging, Journal of Chemical Physics,134 (2011) 211101 (b) L. C. Ch’ng, A. K. Samanta, G. Czakó, J. M. Bowman and H. Reisler, Experimental and theoretical investigations of energy transfer and hydrogen-bond breaking in the water dimer, Journal of the American Chemical Society, 134 (2012) 15430-15435. [Back]
  11. Y. Koga, Two-dimensional characterization of the effect of solute on H2O: A thermodynamic probing methodology, 205 Journal of Molecular Liquids, (2015) 31-36 [Back, 2, 3]
  12. T. Morita, P. Westh, K. Nishikawa, and Y. Koga, How much weaker are the effects of cations than those of anions? The effects of K+ and Cs+ on the molecular organization of liquid H2O, Journal of Physical Chemistry B 118 (2014) 8744-8749. [Back]
  13. F. Alimi, M. Tlili, M. Ben Amor, C. Gabrielli and G. Maurin, Influence of magnetic field on calcium carbonate precipitation, Desalination 206 (2007) 163-168. [Back]
  14. M. Taghipoor, G. Barles, C. Georgelin, J. R. Licois and P. Lescoat, Digestion modelling in the small intestine: Impact of dietary fibre, Mathematical Biosciences, 258 (2014) 101-112.
  15. A. Picard, R. S. Davis, M. Gläser and K. Fujii, Revised formula for the density of moist air (CIPM-2007) Metrologia 45 (2008) 149-155. [Back, 2]
  16. Optum, Effectiveness of homeopathy for clinical conditions : Evaluation of the evidence (2013); NHMRC draft Information Paper: Evidence on the effectiveness of homeopathy for treating health conditions (2014). [Back]
  17. E. J. W. Verwey and J. Th. G. Overbeek, Theory of the stability of lyophobic colloids, (Elsevier, New York, 1948). [Back]
  18. .E. Tyrode S. Sengupta and A. Sthoer, Identifying Eigen-like hydrated protons at negatively charged interfaces, Nature Communications, 11 (2020) 493. [Back]
  19. M. Yamabhai, S. Chumseng, K. Yoohat and W. Srila, Diverse biological effects of electromagnetic-treated water, Homeopathy, 103 (2014) 186-192. [Back]
  20. D. S. Smith, C. H. Mannheim and S. G. Gilbert, Water sorption isotherms of sucrose and glucose by inverse gas chromatography, Journal of Food Science, 46 (1981) 1051-1053; F. De Vito, B. Veytsman, P. Painter and J. L. Kokini, Simulation of the effect of hydrogen bonds on water activity ofglucose and dextran using the Veytsman model, Carbohydrate Polymers 117 (2015) 236-246. [Back]
  21. R. M. Key, A. Kozyr, C. L. Sabine, K. Lee, R. Wanninkhof, J. L. Bullister, R. A. Feely, F. J. Millero, C. Mordy, and T.-H. Peng, A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP), Global Biogeochemical Cycles 18 (2004) GB4031. [Back]
  22. Intergovernmental Panel on Climate Change, Climate change 2013, The physical science basis (2013) ISBN 978-92-9169-138-8; R. J. Millar, J. S. Fuglestvedt, P. Friedlingstein, J.Rogelj, M. J. Grubb, H. D. Matthews, R. B. Skeie, P. M. Forster, D.J. Frame and M. R. Allen, Emission budgets and pathways consistent with limiting warming to 1.5 °C, Nature Geoscience, 10, (2017) 741-747. [Back]
  23. J. Li, H.-F. Zhang, G.-Q. Shao, B.-L. Wu and S.-X. Ouyang, Negative differential resistance: Another banana? Europhysics Letters, 108 (2014) 27005; arXiv:1409.6438 [cond-mat]. [Back, 2]
  24. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd Review Ed., (Butterworth, London 1970) pp. 483-485, 491-496. [Back, 2]
  25. A. Salis and B. W. Ninham, Models and mechanisms of Hofmeister effects in electrolyte solutions, and colloid and protein systems revisited. Chem Soc Review 43 (2014 ) 7358-7377. [Back, 2] [Back to Top to top of page]
  26. R. H. Tromp, M. Vis, B. H. Erné and E. M. Blokhuis, Composition, concentration and charge profiles of water-water interfaces, Journal of Physics: Condensed Matter, 26 (2014) 464101. [Back]
  27. X. Zhang, Y. Huang, Z. Ma, Y. Zhou, J. Zhou, W. Zheng, Q. Jiange and C. Q. Sun, Hydrogen-bond memory and water-skin supersolidity resolving the Mpemba paradox, Physical Chemistry Chemical Physics, 16 (2014) 22995-23002; Y. Huang, X. Zhang, Z. Ma, Y. Zhou, W. Zheng, J. Zhou, C. Q. Sun, Hydrogen-bond relaxation dynamics: Resolving mysteries of water ice, Coordination Chemical Reviews, 285 (2015) 109-165. [Back, 2]
  28. Y. Peng, J. M. J. Swanson, S.-g. Kang, R. Zhou and G. A. Voth, Hydrated excess protons can create their own water wires Journal of Physical Chemistry B, 119 (2015) 9212-9218. [Back]
  29. M. Morita, H. Takahashi, S. Yabushita and K. Takahashi, Why does the IR spectrum of hydroxide stretching vibration weaken with increase in hydration? Physical Chemistry Chemical Physics, 16 (2014) 23143-23149. [Back]
  30. R. K. Lam, A. H. England, A. T. Sheardy, O. Shih, J. W. Smith, A. M. Rizzuto, D. Prendergast and R. J. Saykally, The hydration structure of aqueous carbonic acid from X-rayabsorption spectroscopy, Chemical Physics Letters, 614 (2014) 282-286. [Back]
  31. M. N. Zhadin, B. V. Bakhare and N. V. Bobkova, Mechanism of action of combined extremely weak magnetic field
    on aqueous solution of amino acid, Biophysics 59 (2014) 677-679; Biofizika 59 (2014) 829-832. [Back]
  32. N. P. Palmina, E. L. Maltseva and T. E. Chasovskaya, Effect of dilute solutions of biologically active substances on cell membranes, Biophysics 59 (2014) 577-587; Biofizika 59 (2014) 704-716. [Back]
  33. G. Maroulis, Hyperpolarizability of H2O revisited: accurate estimate of the basis set limit and the size of electron correlation effects, Chemical Physics Letters, 289 (1998) 403-411. [Back]
  34. T. Vilarifio and M. E. Sastre de Vicente, Theoretical calculations of the ionic strength dependence of the ionic product of water based on a mean spherical approximation, Journal of Solution Chemistry, 26 (1997) 833-846. [Back]
  35. K.-I. Murata, H. Tanaka, Liquid-liquid transition without macroscopic phase separation in a water glycerol mixture, Nature, Mater. 11 (2012) 436-443. [Back]
  36. F. Caupin, Escaping the no man's land: Recent experiments on metastable liquid water, Journal of Non-Crystalline Solids, 407(2014) 441-448. [Back, 2
  37. V. C. Nibali and M. Havenith, New insights into the role of water in biological function: studying solvated biomolecules using terahertz absorption xpectroscopy in conjunction with molecular dynamics simulations, Journal of the American Chemical Society, 136 (2014) 12800-12807. [Back, 2
  38. C. M. Witta, M. Bluth, H. Albrecht, T. E. R. Weißhuhn, S. Baumgartner and S. N. Willich, The in vitro evidence for an effect of high homeopathic potencies—–A systematic review of the literature, Compl. Therap. Med. 15 (2007) 128-138. [Back]
  39. D. Bandyopadhyay, S. Mohan, S. K. Ghosh, and N. Choudhury, Molecular dynamics simulation of aqueous urea solution: is urea a structure breaker? Journal of Physical Chemistry B, 118 (2014) 11757-11768. [Back]
  40. V. A. Sirotkin and A. V. Khadiullina, Gibbs energies, enthalpies, and entropies of water and lysozyme at the inner edge of excess hydration, Journal of Chemical Physics,139 (2013) 075102. [Back]
  41. A. V. Shavlov, I. V. Sokolov, V. L. Khazan and S. N. Romanyuk, Viscosity of water fog, Phys. Scr. 89 (2014) 125402. [Back]
  42. L. Fang and J. M. Catchmark, Structure characterization of native cellulose during dehydration and rehydration, Cellulose, 21 (2014) 3951-3963. [Back]
  43. P. Parkkinen, S. Riikonen and L. Halonen, Ice XI: Not that ferroelectric, Journal of Physical Chemistry C 118 (2014) 26264-26275. [Back]
  44. (a) T. Okada, T. Iitaka T. Yagi and K. Aoki, Electrical conductivity of ice VII, Science Reports, 4 (2014) 5778; doi:10.1038/ srep05778; (b) N. Noguchi and T. Okuchi, Self-diffusion of protons in H2O ice VII at high pressures: Anomaly around 10 GPa, Journal of Chemical Physics,144 (2016) 234503. [Back]
  45. H. Batzer and U. T. Kreibich, Influence of water on thermal transitions in natural polymers and synthetic polyamides, Polymer Bulletin, 5 (1981) 585-590. [Back, 2
  46. G. W. Koch, S. C. Sillett, G. M. Jennings and S. D. Davis, The limits to tree height. Nature, 428 (2004) 851-854. [Back]
  47. J. A. Fournier, C. T. Wolke, C.r J. Johnson, M. A. Johnson, N. Heine, S. Gewinner, W. Schöllkopf, T. K. Esser, M. R. Fagiani, H. Knorke and K. R. Asmis, Site-specific vibrational spectral signatures of water molecules in the magic H3O+(H2O)20 and Cs+(H2O)20 clusters,Proceedings of the National Academy of Sciences, 111 (2014) 18132-18137; J. A. Fournier, C. J. Johnson, C. T. Wolke, G. H. Weddle, A. B. Wolk and M. A. Johnson, Vibrational spectral signature of the proton defect in the three-dimensional H+(H2O)21 cluster, Science, 344 (2014) 1009-1012. [Back]
  48. K. E. Riley, C. L. Ford Jr. and K. Demouchet, Comparison of hydrogen bonds, halogen bonds, C-H····pi interactions, and C-X···pi interactions using high-level ab initio methods, Chemical Physics Letters, 621 (2015) 165-170. [Back, 2
  49. K. Tompa, M. Bokor, T. Verebélyi and P. Tompa, Water rotation barriers on protein molecular surfaces, Chemical Physics, 448 (2014) 15-25. [Back, 2
  50. K. T. Nguyen, A. V. Nguyen and G. M. Evans, Interactions between halide anions and interfacial water molecules in relation to the Jones–Ray effect, Physical Chemistry Chemical Physics, 16 (2014) 24661-24665. [Back] [Back to Top to top of page]
  51. B. Gundlach and J. Blum, The stickiness of micrometer-sized water-ice particles, Astrophysics Journal, 798 (2015) 34; arXiv:1410.7199v1 [astro-ph.EP] 27 Oct 2014. [Back]
  52. A. Falenty, T. C. Hansen and W. F. Kuhs, Formation and properties of ice XVI obtained by emptying a type CS-II clathrate hydrate, Nature, 516 (2014) 231-233. [Back, 2]
  53. G. Graziano, On the mechanism of cold denaturation, Physical Chemistry Chemical Physics, 16 (2014) 21755-21767;A. Grimaldi and G. Graziano, Water and cold denaturation of small globular proteins, Journal of Molecular Liquids, 264 (2018) 579-584. [Back]
  54. I. Bergonzi, L. Mercury, J.-B. Brubach and P. Roy, Gibbs free energy of liquid water derived from infrared measurements, Physical Chemistry Chemical Physics, 16 (2014) 24830-24840. [Back, 2]
  55. M. Ahmed, V. Namboodiri, A. K. Singh, and J. A. Mondal, On the intermolecular vibrational coupling, hydrogen bonding, and librational freedom of water in the hydration shell of mono- and bivalent anions, Journal of Chemical Physics,141 (2014) 164708. [Back, 2]
  56. T. P. Pollard and T. L. Beck, The thermodynamics of proton hydration and the electrochemical surface potential of water, Journal of Chemical Physics,141 (2014) 18C512. [Back, 2]
  57. A. Bogdan and T. Loerting, Phase separation during freezing upon warming of aqueous solutions, Journal of Chemical Physics,141 (2014) 18C533. [Back]
  58. J. D. Slinker, N. B. Muren, S. E. Renfrew and J. K. Barton, DNA charge transport over 34 nm, Nature, Chem. 3 (2011) 228-233; P. A. Sontz, T. P. Mui, J. O. Fuss, J. A. Tainer, and J. K. Barton, DNA charge transport as a first step in coordinating the detection of lesions by repair proteins, Proceedings of the National Academy of Sciences, 109 (2012) 1856-1861; R. F. Service, Live wire Do cells use electricity to repair DNA? Science, 346 (2014) 1284-1287; P.-O. Lowdin, Proton tunneling in DNA and its biological implications, Reviews of Modern Physics, 35 (1963) 724-732. [Back]
  59. E. Pennisi, Water's tough skin, Science, 343 (2014) 1194-1197. [Back]
  60. C. Pérez, M. T. Muckle, D. P. Zaleski, N. A. Seifert, B. Temelso, G. C. Shields, Z. Kisiel and B. H. Patel, Structures of cage, prism, andbook isomers of water hexamer from broadband rotational spectroscopy, Science, 336 (2012) 897-901. [Back]
  61. H.-Y. Zhao, J. Wang, X.-J. Su, D.-B. Zhang, and Y. Liu, Ice carbons Journal of Physical Chemistry C 118 (2014) 27502-27508; Q. Zhu, A. R. Oganov, M. A. Salvadó, P. Pertierra, and A. O. Lyakhov, Denser than diamond: Ab initio search for superdense carbon allotropes, Physical Review, B 83 (2011) 193410, Erratum Physical Review, B 83 (2011) 239902; Z. Li, M. Hu, M. Ma, Y.Gao, B. Xu, J. He, D.Yu, Y.Tian and Z. Zhao, Superhard superstrong carbon clathrate,Carbon, 105 (2016) 151e155. [Back]
  62. P. W. Rosenkranz, A model for the complex dielectric constant of supercooled liquid water at microwave frequencies, IEEE Trans. Geosci. Remote Sensing 53 (2015) 1387-1393. [Back]
  63. F. E. G. Güner, J. Wåhlin, M. Hinge and S. Kjelstrup, The temperature jump at a growing ice-water interface, Chemical Physics Letters, 622 (2015) 15-19. [Back]
  64. A. Rastogi, A. K. Ghosh and S. J. Suresh, Hydrogen bond interactions between water molecules in bulk liquid, near electrode surfaces and around ions, In Thermodynamics - Physical Chemistry of Aqueous Systems, J. C. Moreno-Piraján (Ed.) (2011), ISBN: 978-953-307-979-0. InTech, pp 351-364. [Back]
  65. T. Sugiyama and T. Yoshioka, Functional difference between deuterated and protonated macromolecules, In Protein Structure, E. Faraggi (Ed.) (2012), ISBN: 978-953-51-0555-8, InTech, pp 291-306. [Back]
  66. P. Fenter and S. S. Lee, Hydration layer structure at solid–water interfaces, MRS Bulletin 39 (2014) 1056-1061. [Back]
  67. C. Gainaru, A. L. Agapov, V. Fuentes-Landete, K. Amann-Winkel, H. Nelson, K. W. Köster, A. I. Kolesnikov, V. N. Novikov, R. Richert, R. Böhmer, T. Loerting and A. P. Sokolov, Anomalously large isotope effect in the glass transition of water, Proceedings of the National Academy of Sciences, 111 (2014) 17402-17407. [Back]
  68. D. P. Shelton, Long-range orientation correlation in water, Journal of Chemical Physics, 141 (2014) 224506. [Back, 2]
  69. H. Miyamoto, U. Schnupf and J. W. Brady, Water structuring over the hydrophobic surface of cellulose, Journal of Agriculture and Food Chemistry, 62 (2014) 11017-11023. [Back]
  70. L. B. Railsback, An earth scientist's periodic table of the elements and their ions, Geology, 31 (2003) 737-740. [Back]
  71. L. B. Boinovich and A. M. Emelyanenko, Experimental determination of the surface energy of polycrystalline ice, Doklady Physical Chemistry 459 (2014) 198-202; Doklady Akad. Nauk, 459 (2014) 702-706. [Back]
  72. P. L. Geissler, Temperature dependence of inhomogeneous broadening: on the meaning of isosbestic points, Journal of the American Chemical Society, 127 (2005) 14930-14935. [Back]
  73. L. B. Skinner, C. J. Benmore, J. C. Neuefeind and J. B. Parise, The structure of water around the compressibility minimum, Journal of Chemical Physics, 141 (2014) 214507. [Back]
  74. B. Sulbarán, G. Toriz, G. G. Allan, G. H. Pollack and E. Delgado, The dynamic development of exclusion zones on cellulosic surfaces, Cellulose, 21 (2014) 1143-1148. [Back]
  75. S. V. Gudkov, V. I. Bruskov, M. E. Astashev, A. V. Chernikov, L. S. Yaguzhinsky and S. D. Zakharov, Oxygen-dependent auto-oscillations of water luminescence triggered by the 1264 nm radiation, Journal of Physical Chemistry B 115 (2011) 7693-7698; S. V. Gudkov, M. E. Astashev, V. I. Bruskov, V. A. Kozlov, S. D. Zakharov and N. F. Bunkin, Self-oscillating water chemiluminescence modes and reactive oxygen species generation induced by laser irradiation; effect of the exclusionzone created by Nafion, Entropy, 16 (2014) 6166-6185. [Back, 2] [Back to Top to top of page]
  76. R. T. Mathie, S. M. Lloyd, L. A. Legg, J. Clausen, S. Moss, J. R. T. Davidson and I. Ford, Randomised placebo-controlled trials of individualised homeopathic treatment: systematic review and meta-analysis, Systematic Reviews, 3 (2014) 142. [Back]
  77. N. M. Levinson and S. G. Boxer, A conserved water-mediated hydrogen bond network defines bosutinib’s kinase selectivity, Nature, Chemical Biology, 10 (2014) 127-132. [Back]
  78. J. J. Virtanen, T. R. Sosnick and K. F. Freed, Ionic strength independence of charge distributions in solvation of biomolecules, Journal of Chemical Physics, 141 (2014) 22D503. [Back]
  79. R. B. Best, C. Miller and J. Mittal, Role of solvation in pressure-induced helix stabilization R. B. Best, C. Miller and J. Mittal, Journal of Chemical Physics, 141 (2014) 22D522. [Back, 2]
  80. H. Abramczyk, B. Brozek-Pluska, M. Krzesniak, M. Kopec and A. Morawiec-Sztander, The cellular environment of cancerous human tissue. Interfacial and dangling water as a ‘‘hydration fingerprint’’, Spectrochimica Acta A: Molecular and Biomolecular Spectroscopy, 129 (2014) 609-623. [Back, 2]
  81. K.-C. Tan, W. Ho, J. I. Katz, S.-J. Feng, A study of the occurrence of supercooling of water, American Journal of Physics84 (2016) 293; arxiv.org/abs/ 1412.8683 12 Dec. 2014. [Back]
  82. R. Edelman, I. Kusner, R. Kisiliak, S. Srebnik and Y. D. Livney, Y.D., Sugar stereochemistry effects on water structure and on protein stability: the templating concept, Food Hydrocolloids, 48 (2015) 27-37. [Back]
  83. K. A. Kvenvolden, Gas-hydrates - geological perspectives and global change, Reviews of Geophysics, 31 (1993) 173-187. [Back]
  84. M. Garcia-Ratés, P. Miró, A. Müller, C. Bo and J. Bonet Avalos, Encapsulated water inside Mo132 capsules: the role of long-range correlations of about 1 nm, Journal of Physical Chemistry C, 118 (2014) 5545-5555. [Back]
  85. V. V. Vasisht, J. Mathew, S. Sengupta and S. Sastry, Nesting of thermodynamic, structural, and dynamic anomalies in liquid silicon, Journal of Chemical Physics, 141 (2014) 124501. [Back]
  86. L. Wang, M. Ceriotti and T. E. Markland, Quantum fluctuations and isotope effects in ab initio descriptions of water, Journal of Chemical Physics, 141 (2014) 104502. [Back, 2]
  87. X. Meng, J. Guo, J. Peng, J. Chen, Z. Wang, J.-R. Shi, X.-Z. Li, E.-G. Wang and Y. Jiang, Direct visualization of concerted proton tunnelling in a water nanocluster, Nature Physics, 11 (2015) 235-239. [Back]
  88. S. Sen and H. P. Voorheis, Protein folding: Understanding the role of water and the low Reynolds number environment as the peptide chain emerges from the ribosome and folds, Journal of Theoretical Biology, 363 (2014) 169-187 [Back]
  89. V. Shilpi, S. P. Kaur and C. N. Ramachandran, Revisiting the structural pattern and the stability of (H2O)20 clusters using the dispersion corrected density functional method, Chemical Physics Letters, 626 (2015) 39-42. [Back]
  90. M. J. Ryding, R. Izsák, P. Merlot, S. Reine, T. Helgaker and E. Uggerud, Geometry of the magic number H+(H2O)21 water cluster by proxy, Physical Chemistry Chemical Physics, 17 (2015) 5466-5473. [Back]
  91. C. Cheng, M. Guy, A. Narduzzo and K. Takashina, The Leidenfrost maze, European Journal of Physics, 36 (2015) 035004. [Back]
  92. L. B. da Silva, Structural and dynamical properties of water confined in carbon nanotubes, Journal of Nanostructurae in Chemistry, 4 (2014) 104. [Back]
  93. M. A. Metrick II and G. MacDonald, Hofmeister ion effects on the solvation and thermal stability of model proteins lysozyme and myoglobin, Colloids Surfaces A: Physicochemical Engineering Aspects, 469 (2015) 242-251. [Back]
  94. J. Nielsen, M. B. Andreasen, M. Pedersen and M. K. Rasmussen, Towards fast in-lne measurement of water activity, International Journal of Thermophysics, 36 (2015) 577-588. [Back]
  95. A. V. Drozdov and T. P. Nagorskaya, The quasi-periodic character of intermolecular interactions in water, Biophys. 59 (2014) 973-985; Biofizika, 59 (2014) 1195-1208. [Back]
  96. O. Carugo, Structure and function of water molecules buried in the protein core, Current Protein & Peptide Science, 16 (2015) 259-265. [Back]
  97. C. Drechsel-Grau and D. Marx, Tunnelling in chiral water clusters: Protons in concert, Nature Physics, 11 (2015) 216-218. [Back]
  98. G. Pyrgiotakis, A. Vasanthakumar, Y. Gao, M. Eleftheriadou, E. Toledo, A. DeAraujo, J. McDevitt, T. Han, G. Mainelis, R. Mitchell and P. Demokritou, Inactivation of foodborne microorganisms using engineered water nanostructures (EWNS), Environmental Science & Technology, 49 (2015) 3737-3745. [Back]
  99. L.-P. Wang, T. J. Martinez and V. S. Pande, Building force fields: An automatic, systematic, and reproducible
    approach, Journal of Physical Chemistry Letters, 5 (2014) 1885-1891. [Back]
  100. F. Yen and Z. Chi, Proton ordering dynamics of H2O ice, Physical Chemistry Chemical Physics, 17 (2015) 12458-12461; arxiv.org/abs/1503.01830. [Back, 2] [Back to Top to top of page]



Home | Site Index | Site Map | Search | LSBU | Top


This page was established in 2014 and last updated by Martin Chaplin on 15 September, 2021

Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License