Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Water Structure and Science, References 701 - 800

 

  1. J. Yang, S. Meng, L. F. Xu and E. G. Wang, Ice tesselation on a hydroxylated silica surface, Physical Review Letters 92 (2004) 146102. [Back]
  2. T. Yokomizo, M. Nakasako, T. Yamazaki, H. Shindo and J. Higo, Hydrogen-bond patterns in the hydration structure of a protein, Chemical Physics Letters, 401 (2005) 332-336. T. Yokomizo, J. Higo and M. Nakasako, Patterns and networks of hydrogen-bonds in the hydration structure of human lysozyme, Chemical Physics Letters, 410 (2005) 31-35. [Back]
  3. H. Inaba, T. Saitou, K. Tozaki, and H. Hayashi, Effect of the magnetic field on the melting transition of H2O and D2O measured by a high resolution and supersensitive differential scanning calorimeter, J. Appl. Phys. 96 (2004) 6127-6132. [Back]
  4. H. Yu and W. F. van Gunsteren, Charge-on-spring polarizable water models revisited: from water clusters to liquid water to ice, Journal of Chemical Physics,121 (2004) 9549-9564. [Back, 2]
  5. Y. Toshimura, H. Mao and R. J. Hemley, Transformation of ice in aqueous KCl solution to a high-pressure, low temperature phase, Chemical Physics Letters, 400 (2004) 511-514. [Back]
  6. H. Kanno and C. A. Angell, Water: Anomalous compressibilities to 1.9 kbar and correlation with supercooling limits, Journal of Chemical Physics,70 (1979) 4008-4016. [Back]
  7. C. H. Spink and J. B. Chaires, Effects of hydration, ion release, and excluded volume on the melting of triplex and duplex DNA, Biochemistry 38 (1999) 496-508. [Back]
  8. E. Rozners and J. Moulder, Hydration of short DNA, RNA and 2'-OMe oligonucleotides determined by osmotic stressing, Nucleic Acids Research 32 (2004) 248-254; Corrigendum, Nucleic Acids Research 32 (2004) 6153. [Back]
  9. J. M. Hermida-Ramón and G.Karlström, Study of the hydronium ion in water, A combined quantum chemical and statistical mechanical treatment, Journal of Mol. Struct. Theochem 712 (2004) 167-173. [Back]
  10. P. Pesic, The sky is falling: Newton's droplets, Clausius's bubbles and Tyndall's 'sky matter', Eur. Journal of Phys. 26 (2005) 189-193. [Back]
  11. (a) R. M. Pashley, M. Rzechowicz, L. R. Pashley and M. J. Francis, De-gassed water Is a better cleaning agent, Journal of Physical Chemistry B 109 (2005) 1231-1238. (b) M. J. Francis, N. Gulati and R. M. Pashley, The dispersion of natural oils in de-gassed water, Journal of Colloid and Interface Science, 299 (2006) 673-677. (c) R. M. Pashley, M. J. Francis and M. Rzechowicz, The hydrophobicity of non-aqueous liquids and their dispersion in water under de-gassed conditions, Curr. Opin. Colloid Interface Science 13 (2008) 236-244. It is suggested that carbonic acid may increase in frozen samples (produced by freeze-thaw degassing) at the cost of any dissolved CO2 [3450], and subsequently giving rise to excess bicarbonate. This bicarbonate may also cause the emulsification of oil in aqueous solutions after freeze/thaw degassing. [Back, 2, 3, 4, 5, 6, 7]
  12. D. J. Anick, High sensitivity 1H-NMR spectroscopy of homeopathic remedies made in water, BMC Complement. Alt. Med. 4:15 (2004). [Back]
  13. X. Yu and D. M. Leitner, Thermal transport in liquid and glassy water computed with normal modes, Chemical Physics Letters, 398 (2004) 480-485. [Back]
  14. M. Barteri, A. Pala and S. Rotella, Structural and kinetic effects of mobile phone microwaves on acetylcholin-esterase activity, Biophysical Chemistry, 113 (2005) 245-253. [Back]
  15. J. C. Dore, M. Garawi and M.-C. Bellissent-Funel, Neutron diffraction studies of the structure of water at ambient temperatures, revisited [a review of past developments and current problems, Molecular Physics, 102 (2004) 2015-2035. [Back]
  16. W. M. Jones, The triple point temperature of tritium oxide, Journal of the American Chemical Society, 74 (1952) 6065-6066. [Back]
  17. V. F. Petrenko and R. W. Whitworth, Physics of ice (Oxford University Press, Oxford, 1999). [Back, 2, 3, 4]
  18. J. Urquidi, C. J. Benmore, P. A Egelstaff, M.Guthrie, S. E. McLain, C. A. Tulk, D. D. Klug and J. F. C. Turner, A structural comparison of supercooled water and intermediate density amorphous ices, Molecular Physics, 102 (2004) 2007-2014. [Back]
  19. R. J. Hemley, A. P. Jephcoat, H. K. Mao, C. S. Zha, L. W. Finger and D. E. Cox, Static compression of H2O-ice to 128 GPa (1.28 Mbar). Nature, 330 (1987) 737-740. [Back]
  20. S. J. Schmidt, Water and solids mobility in foods, Advances in Food & Nutrition Research 48 (2004) 1-101. [Back]
  21. T. C. Davidson, R. H. Newman and M. J. Ryan, Variations in the fibre repeat between samples of cellulose I from different sources, Carbohydate Research, 339 (2004) 2889-2893. [Back]
  22. (a) E. E. Meyer, Q. Lin and J. N. Israelachvili, Effects of dissolved gas on the hydrophobic attraction between surfactant-coated surfaces, Langmuir, 21 (2005) 256-259; (b) H. Stevens, R. F. Considine, C. J. Drummond, R. A. Hayes and P. Attard, Effects of degassing on the long-range attractive force between hydrophobic surfaces in water, Langmuir, 21 (2005) 6399-6405; (c) E. E. Meyer, K. J. Rosenberg and J. Israelachvili, Recent progress in understanding hydrophobic interactions, Proceedings of the National Academy of Sciences of the United States of America, 103 (2006) 15739-15746. [Back]
  23. M. R. Mangione, D. Giacomazza, D. Bulone, V. Martorana, G. Cavallaro and P.L. San Biagio, K+ and Na+ effects on the gelation properties of κ-carrageenan, Biophysical Chemistry, 113 (2005) 129-135. [Back]
  24. B. J. Yoon, Is liquid water a hot quantum fluid? Anomalies of water in thin liquid films and in biological systems, Bulletin Korean Chem.ical Society, 24 (2003) 1211-1214. [Back]
  25. E. Meyer, Internal water-molecules and H-bonding in biological macromolecules - a review of structural features with functional implications, Protein Science, 1 (1992) 1543-1562. [Back] [Back to Top to top of page]
  26. A. Khan, M. R. Khan, M. F. Khan and F. Khanam, A liquid water model: explaining the anomalous density variation of liquid D2O and shifting of density maximum under pressure, Journal of Molecular Structure (Theochem), 679 (2004) 165-170. [Back]
  27. W. Dzwolak and V. Smirnovas, A conformational α-helix to β-sheet conformational transition accompanies racemic self-assembly of polylysine: an FT-IR spectroscopic study, Biophysical Chemistry, 115 (2005) 49-54. [Back]
  28. M. P. Hodges, A. J. Stone and S. S. Xantheas, Contribution of many-body terms to the energy for small water clusters: A comparison of ab initio calculations and accurate model potentials, Journal of Physical Chemistry A, 101 (1997) 9163-9168; M. Riera, E. Lambros, T. T. Nguyen, A. W. Goetz and F. Paesani, Low-order many-body interactions determine the local structure of liquid water, (2019) https://doi.org/10.26434/chemrxiv.8026553.v1 [Back]
  29. F. H. Stillinger, Water revisited, Science, 209 (1980) 451-457. [Back, 2]
  30. T. Yokono, S. Shimokawa, T. Mizuno, M. Yokono and T. Yokokawa, Clathrate-like ordering in liquid water induced by infrared irradiation, Japanese Journal of Applied Physics, 43 (2004) L1436-L1438. [Back, 2, 3]
  31. B. J. Yoon and M. S. Jhon, Stability of the pentagon structure of water cluster, Bulletin of the Korean Chemical Soc.iety, 12 (1991) 67-70. [Back]
  32. H. Eyring and M. S. Jhon, Significant liquid structures, (John Wiley & Sons, New York, 1969). [Back]
  33. S. D. Hong and M. S. Jhon, Theoretical study on the role of water in anesthesia,Bulletin of the Korean Chemical Soc.iety, 7 (1986) 388-391; N. Kundacina, M. Shi and G. H. Pollack, Effect of local and general anesthetics on interfacial water
    PLoS ONE 11 (2016) e0152127. doi:10.1371/journal.pone.0152127. [Back]
  34. A. Khan, Solvated electron (H2O)20 dodecahedral cavity: calculated stretch frequencies and vertical dissociation energy, Chemical Physics Letters, 401 (2005) 85-88. [Back]
  35. Y. I. Cho and S.-H. Lee, Reduction in the surface tension of water due to physical water treatment for fouling control in heat exchangers, International Communications in Heat and Mass Transfer, 32 (2005) 1-9. [Back, 2]
  36. E. V. Tsiper, Polarization forces in water deduced from single molecule data, Physical Review Letters, 94 (2005) 013204. [Back, 2, 3, 4]
  37. T. S. Light, S. Licht, A. C. Bevilacqua and K. R. Morash, The fundamental conductivity and resistivity of water, Electrochemical and Solid-State Letters, 8 (2005) E16-E19. [Back, 2, 3]
  38. (a) O. Teschke and E. F. de Souza, Water molecular arrangement at air/water interfaces probed by atomic force microscopy, Chemical Physics Letters, 403 (2005) 95-101. (b) O. Teschke and E. F. de Souza, Water molecule clusters measured at water/air interfaces using atomic force microscopy, Physical Chemistry Chemical Physics, 7 (2005) 3856-3865. [Back]
  39. S. Ikeda, T. Takata, M. Komoda, M. Hara, J. N. Kondo, K. Domen, A. Tanaka, H. Hosono and H. Kawazoe, Mechano-catalysis - a novel method for overall water splitting, Physical Chemistry Chemical Physics, 1 (1999) 4485-4491. G. Hitoki, T. Takata, S. Ikeda, M. Hara, J. N. Kondo, M. Kakihana and K. Domen, Mechano-catalysis overall water splitting on some mixed oxides, Catalysis Today, 63 (2000) 175-181. [Back, 2]
  40. T. S. Pennanen, J. Vaara, P. Lantto, A. J. Sillanpää, K. Laasonen and J, Jokisaari, Nuclear magnetic shielding and quadrupole coupling tensors in liquid water: A combined molecular dynamics simulation and quantum chemical study, Journal of the American Chemical Society, 126 (2004) 11093-11102. [Back]
  41. A. Grossfield, Dependence of ion hydration on the sign of the ion's charge, Journal of Chemical Physics,122 (2005) 024506. [Back]
  42. A. Grossfield, P. Ren and J. W. Ponder, Ion solvation thermodynamics from simulation with a polarizable force field, Journal of the American Chemical Society, 125 (2003) 15671-15682. [Back]
  43. A. Salabat, L. Shamshiri and F. Sahrakar, Thermodynamic and transport properties of aqueous trisodium citrate system at 298.15 K, Journal of Molecular Liquids, 118 (2005) 67-70. [Back]
  44. J. S. Delaney, Predicting aqueous solubility from structure, Drug Discovery Today 10 (2005) 289-295. [Back]
  45. J. Horita and D. R. Cole, Stable isotope partitioning in aqueous and hydrothermal systems to elevated temperatures, in Aqueous systems at elevated temperatures and pressures: Physical chemistry in water, steam and hydrothermal solutions, ed. D. A. Palmer, R. Fernández-Prini and A. H. Harvey (Elsevier, Amsterdam, 2004) pp. 277-319. [Back]
  46. J. L. Finney, Water? What's so special about it? Philosophical Transactions of the Royal Society B: Biological Sciences, 359 (2004) 1145-1165. [Back]
  47. R. Martoñák, D. Donadio and M. Parrinello, Evolution of the structure of amorphous ice - from low-density amorphous (LDA) through high-density amorphous (HDA) to very high-density amorphous (VHDA) ice, Journal of Chemical Physics, 122 (2005) 134501. [Back, 2]
  48. Z. Burkus and F. Temelli, Rheological properties of barley β-glucan, Carbohydrate Polymers, 59 (2005) 459-465. [Back]
  49. K. Umemoto and R. M. Wentzcovitch, Low -> high density tranformations in ice, Chemical Physics Letters, 405 (2005) 53-57. [Back]
  50. M. L. Cowan, B. D. Bruner, N. Huse, J. R. Dwyer, B. Chugh, E. T. J. Nibbering, T. Elsaesser and R. J. D. Miller, Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O, Nature, 434 (2005) 199-202. [Back, 2, 3] [Back to Top to top of page]
  51. B. J. Murray, D. A. Knopf and A. K. Bertram, The formation of cubic ice under conditions relevant to Earth's atmosphere, Nature, 434 (2005) 202-204. B. J. Murray and A. K. Bertram, Formation and stability of cubic ice in water droplets, Phys. Chem. Chemical Physics, 8 (2006) 186-192. [Back]
  52. M. J. Hey, D. P. Jackson and H. Yan, The salting-out effect and phase separation in aqueous solutions of electrolytes and poly(ethylene glycol), Polymer 46 (2005) 2567-2572. [Back]
  53. M. Wada, H. Chanzy, Y. Nishiyama, and P.Langan, Cellulose IIII crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction, Macromolecules 37 (2004) 8548 -8555. [Back]
  54. (a) S. Klotz, Th. Strässle, R. J. Nelmes, J. S. Loveday, G. Hamel, G. Rousse, B. Canny, J. C. Chervin and A. M. Saitta, Nature, of the polyamorphic transition in ice under pressure, Physical Review Letters 94 (2005) 025506. (b) C. A. Tulk, C. J. Benmore, D. D. Klug and J. Neuefeind, Comment on "Nature, of the polyamorphic transition in ice under pressure", Physical Review Letters 96 (2006) 149601. (c) S. Klotz, Th. Strässle, R. J. Nelmes, J. S. Loveday, G. Hamel, G. Rousse, B. Canny, J. C. Chervin, and A. M. Saitta, Klotz et al. Reply: Physical Review Letters 96 (2006) 149602. [Back]
  55. E. G. Diken, J. M. Headrick, J. R. Roscioli, J. C. Bopp, M.A. Johnson, and Anne B. McCoy, Fundamental excitations of the shared proton in the H3O2 and H5O2+ complexes, Journal of Physical Chemistry A 109 (2005) 1487-1490. [Back]
  56. S. Klotz, Th.Strässle, A. M. Saitta, G. Rousse, G. Hamel, R. J. Nelmes, J. S. Loveday and M. Guthrie, In situ neutron diffraction studies of high density amorphous ice under pressure, Journal of Physics: Condensed Matter, 17 (2005) S967-S974. [Back]
  57. (a) E. E. Fesenko and A. Ya. Gluvstein, Changes in the state of water, induced by radiofrequency electromagnetic fields, FEBS Letters, 367 (1995) 53-55. (b) M. Yamashita, C. A. Duffield and W. A. Tiller, Direct current magnetic field and electromagnetic field effects on the pH and oxidation-reduction potential equilibration rates of water. 1. Purified water, Langmuir, 19 (2003) 6851-6856. [Back]
  58. Z. S. Nickolov and J. D. Miller, Water structure in aqueous solutions of alkali halide salts: FTIR spectroscopy of the OD stretching band, Journal of Colloid and Interface Science, 287 (2005) 572-580. [Back, 2]
  59. G. Trombetta, C. Di Bona and E. Grazi, The transition of polymers into a network of polymers alters per se the water activity, International Journal of Biological Macromolecules, 35 (2005) 15-18. [Back]
  60. I. Donati, S. Holtan, Y. A. Mørch, M. Borgogna, M. Dentini and Skjåk-Bræk, New hypothesis on the role of alternating sequences in calcium-alginate gels, Biomacromolecules, 6 (2005) 1031-1040. [Back]
  61. Y. Yonetani, A severe artifact in simulation of liquid water using a long cut-off length: Appearance of a strange layer structure, Chemical Physics Letters, 406 (2005) 49-53. [Back]
  62. G. Ling, What determines the normal water content of a living cell? Physiol. Chem.Phys. & Med. NMR, 36 (2004) 1-19. [Back]
  63. T. Yagasaki, K. Iwahashi, S. Saito and I. Ohmine, A theoretical study on anomalous temperature dependence of pKw of water, Journal of Chem. Phys. 122 (2005) 144504. [Back]
  64. H. Whiting, A new theory of cohesion applied to the thermodynamics of liquids and solids, Proceedings of the American Academy of Arts and Sciences, 19 (1883-1884) 353-431, 433-466. Developed by (the discoverer of X-rays): W. K. Röntgen, Ueber die constitution des flüssigen wassers, Annalen der Physik, 45 (1892) 91-97. [Back]
  65. H. M. Chadwell, The molecular structure of water, Chemical Reviews, 4 (1927) 357-398. [Back]
  66. (a) J. D. Bernal and R. H. Fowler, A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. Journal of Chemical Physics,1 (1933) 515-548; (b) J. A. Pople, Molecular association in liquids. II. A theory of the structure of water, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 205 (1081) (1951) 163-178. [Back, 2]
  67. (a) O. Ya. Samoilov, Zh. Fiz. Khim. 20 (1946) 1411. (b) M. D. Danford and H. A. Levy, The structure of liquid water at room temperature, Journal of the American Chemical Society, 84 (1962) 3965-3966; (c) A. H. Narten and H. A. Levy, Observed diffraction pattern and proposed models of liquid water, Science, 165 (1969) 447-454; B. Kamb, Structure of water, Science, 167 (1970) 1520-1521; A. H. Narten and H. A. Levy, Science, 167 (1970) 1521; (d) A. Eucken, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch- Physikalische Klasse, (1946) 38; (e) L. Hall, The Origin of Ultrasonic Absorption in Water, Physical Review,. 73 (1948) 775-781; (f) W. Bousfield and T. Lowry. The electrical conductivity and other properties of sodium hydroxide in aqueous solutions as elucidating the mechanism of conduction. Philosophical Transactions of the Royal Society, 204 (1905) 253-322; (g) G. Nemethy and H. A. Scheraga, Structure of water and hydrophobic bonding in proteins, A model for the thermodynamic properties of liquid water, Journal of Chemical Physics, 36 (1962) 3382-3400; (g) P. A. Guye, W. R. Bousfield, T. M. Lowry, W. Sutherland, W. Nernst, H. B. Baker, V. H. Veley, F. P. Sexton, W. Ramsay, G. Senter, W. P. Dreaper, and J. Walker, The constitution of water, Transactions of the Faraday Society, 6 (1910) 71-123; (h) G. Wada, A simplified model for the structure of water,Bulletin of the Chemical Society of Japan, 34 (1961) 955-962; (i) C. M. Davis, Jr. and I. Jarzynski, Structural relaxation in water, Advances in Molecular Relaxation Processes, 1 (1967-68) 155-199; (j) H. S. Frank, The structure of ordinary water, Science, 169 (1970) 635-641; (k) H. E. Armstrong, The origin of the osmotic effect, Proceedings of the Royal Society, London, 78 (1906) 264-271. (l) E. Rapoport, Model for melting curve maxima at high pressure, Journal of Chemical Physics, 46 (1967) 2891-2895. [Back]
  68. S. Aasland and P. F. McMillan, Density-driven liquid-liquid phase-separation in the system Al2O3-Y2O3, Nature, 369 (1994): 633-636. [Back]
  69. G. C Vezzoli, F. Dachille and R. Roy, High-pressure studies of polymerization in sulfur, Journal of Polymer Science, A-1 7 (1969) 1557-1566. [Back]
  70. Y. Katayama, Y. Inamura, T. Mizutani, M. Yamakata, W. Utsumi and O. Shimomura, Macroscopic separation of dense fluid phase and liquid phase of phosphorus, Science, 306 (2004) 848-851. [Back]
  71. J. P. K. Doye, A. A. Louis and M. Vendruscolo, Inhibition of protein crystallization by evolutionary negative design, Physical Biology, 1 (2004) P9-P13. [Back]
  72. R. Gruber, S. Axmann and M. H. Schoenberg, The influence of oxygenated water on the immune status, liver enzymes, and the generation of oxygen radicals; a prospective, randomised, blinded clinical study, Clin. Nutr. 24 (2005) 407-414. [Back]
  73. K. V. Zubow, A. V. Zubow and V. A. Subow, Cluster structure of liquid alcohols, water and n-hexane, Journal of Applied Spectroscopy, 72 (2005) 300-307 (in Russian). [Back]
  74. C.-C. Wu, C.-K. Lin, H.-C. Chang, J.-C. Jiang, J.-L. Kuo and M. L. Klein, Protonated clathrate cages enclosing neutral water molecules: H+(H2O)21 and H+(H2O)28, Journal of Chem. Phys. 122 (2005) 074315. [Back]
  75. (a) C. Vega, E. Sanz and J. L. F. Abascal, The melting temperature of the most common models of water, Journal of Chemical Physics,122 (2005) 114507; (b) C. Vega, J. L. F. Abascal, E. Sanz, L. G. MacDowell and C. McBride, Can simple models describe the phase diagram of water? Journal of Physics: Condensed Matter, 17 (2005) S3283-S3288; (c) R. G. Fernández, J. L. F. Abascal and C. Vega, The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface, Journal of Chemical Physics,124 (2006) 144506. [Back] [Back to Top to top of page]
  76. T. Takamuku, K. Saisho, S. Nozawa and T. Yamaguchi, X-ray diffraction studies on methanol-water, ethanol-water, and 2-propanol-water mixtures at low temperatures, Journal of Molecular Liquids, 119 (2005) 133- 146. [Back]
  77. Y. F. Yano, Correlation between surface and bulk structures of alcohol-water mixtures, Journal of Colloid Interface Science, 284 (2005) 255-259. [Back]
  78. F. Martin and H. Zipse, Charge distribution in the water molecule - A comparison of methods, Journal of Computational Chemistry, 26 (2005) 97-105. [Back]
  79. A. J. Dingley and S.Grzesiek, Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide 2JNN couplings, Journal of the American Chemical Society, 120 (1998) 8293-8297. [Back]
  80. F. Cordier and S. Grzesiek, Direct observation of hydrogen bonds in proteins by interresidue 3hJNC' scalar couplings, Journal of the American Chemical Society, 121 (1999) 1601-1602. [Back]
  81. V. Mäemets and I. Koppel, Effect of ions on the 17O and 1H NMR chemical shifts of water, Journal of the Chemical Society, Faraday Transactions, 94 (1998) 3261-3269. R. Li, Z. Jiang, H. Yang and Y. Guan, Effects of ions in natural water on the 17O NMR chemical shift of water and their relationship to water cluster, Journal of Molecular Liquids, 126 (2006) 14-18. [Back, 2]
  82. N. Nestle, T. Baumann and R. Niessner, Oxygen determination in oxygen-supersaturated drinking waters by NMR relaxometry, Water Research, 37 (2003) 3361-3366. [Back]
  83. T. Tsukahara, M. Harada, H. Tomiyasu and Y. Ikeda, 17O Chemical shift and spin-lattice relaxation measurements of water in liquid and supercritical states by using high-resolution multinuclear NMR, Journal of Supercritical Fluids, 26 (2003) 73-82. [Back]
  84. G. Otting, NMR studies of water bound to biological molecules, Progr. Nucl. Magn. Research Spectr. 31 (1997) 259-285. [Back]
  85. A. Oleinikova, P. Sasisanker and H. Weingärtner, What can really be learned from dielectric spectroscopy of protein solutions? A case study of ribonuclease A, Journal of Chemical Physics,B 108 (2004) 8467-8474. [Back]
  86. G. E. Walrafen, Raman and infrared spectral investigations of water structure, in Water A Comprehensive Treatise, Vol. 1 Ed. F. Franks, (Plenum Press, New York, 1972) pp. 151-214. [Back, 2]
  87. M. Papageorgiou, N. Lakhdara, A. Lazaridou, C. C. Biliaderis and M. S. Izydorczyk, Water extractable (1->3,1->4)-β-D-glucans from barley and oats: An intervarietal study on their structural features and rheological behaviour, Journal of Cereal Science, 42 (2005) 213-224. [Back]
  88. M. J. Blandamer, J. B. F. N. Engberts, P. T. Gleeson and J. C. R. Reis, Activity of water in aqueous systems; A frequently neglected property, Chemical Society Reviews, 34 (2005) 440-458. [Back]
  89. (a) W. M. Latimer and W. H. Rodebush, Polarity and ionization from the standpoint of the Lewis theory of valence, Journal of the American Chemical Society, 42 (1920) 1419-1433; (b) A. Werner, Über Haupt- und Nebenvalenzen und die Constitution der Ammoniumverbindungen, Justig Liebigs Annalen der Chemie, 322 (1902) 261-296. [Back]
  90. H. E. Stanley, S V. Buldyrev, G. Franzese, N. Giovambattista and F. W. Starr, Static and dynamic heterogeneitities in water, Philoshical Transactions of the Royal Society A, 363 (2005) 509-523. [Back]
  91. A. Almond, Towards understanding the interaction between oligosaccharides and water molecules, Carbohydate Research, 340 (2005) 907-920. [Back]
  92. (a) M. M. Koza, H. Schober, H. E. Fischer, T. Hansen and F. Fujara, Kinetics of the high- to low-density amorphous water transition, Journal of Physics: Condensed Matter, 15 (2003) 321-332. (b) M. M. Koza, B. Geil, K. Winkel, C. Köhler, F. Czeschka, M. Scheuermann, H. Schober, and T. Hansen, Nature, of amorphous polymorphism of water, Physical Review Letters, 94 (2005) 125506. [Back]
  93. S. Knez and C. Pohar, The magnetic field influence on the polymorph composition of CaCO3 precipitated from carbonized aqueous solutions, Journal of Colloid Interface Science, 281 (2005) 377-388. [Back]
  94. (a) T. M. Raschke and M. Levitt, Nonpolar solutes enhance water structure within hydration shells while reducing interactions between them, Proceedings of the National Academy of Sciences of the United States of America, 102 (2005) 6777-6782. (b) G. Graziano and B. Lee, On the intactness of hydrogen bonds around nonpolar solutes dissolved in water, Journal of Physical Chemistry B, 109 (2005) 8103-8107. [Back]
  95. Smithsonian Physical Tables, 9th Ed. (Knovel, New York, 2003). [Back]
  96. R. Moreh, R. C. Block, Y. Danon, and M. Neumann, Search for anomalous scattering of keV neutrons from H2O-D2O mixtures, Physical Review Letters, 94 (2005) 185301. [Back]
  97. S. Arai, T. Chatake, T. Ohhara, K. Kurihara, I. Tanaka, N. Suzuki, Z. Fujimoto, H. Mizuno, and N. Niimura, Complicated water orientations in the minor groove of the B-DNA decamer d(CCATTAATGG)2 observed by neutron diffraction measurements, Nucleic Acids Research, 33 (2005) 3017-3024. [Back]
  98. H. Fukazawa, S. Mae, S. Ikeda and O. Watanabe, Proton ordering in Antarctic ice observed by Raman and neutron scattering, Chemical Physics Letters, 294 (1998) 554-558; but a more-recent study on a different, younger, ice sample failed to show any proton ordering [1820]. [Back]
  99. Y. I. Cho, J. Lane and W. Kim, Pulsed-power treatment for physical water treatment, International Communications in Heat and Mass Transfer, 32 (2005) 861-871. [Back]
  100. (a) P. Vallée, J. Lafait, L. Legrand, P. Mentré, M-O. Monod and Y. Thomas, Effects of pulsed low-frequency electromagnetic fields on water characterized by light scattering techniques: Role of bubbles, Langmuir, 21 (2005) 2293-2299. (b) P. Vallée, J. Lafait, P. Mentré, M-O. Monod and Y. Thomas, Effects of pulsed low-frequency electromagnetic fields on water using photoluminescence spectroscopy: Role of bubble/water interface, Journal of Chemical Physics, 122 (2005) 114513. [Back, 2] [Back to Top to top of page]

 

 

 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2005 and last updated by Martin Chaplin on 15 September, 2021


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License