Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
 Go to my page Water Structure and Science

Water Structure and Science, References 2301 - 2400

 

  1. O. Benton, O. Sikora and N. Shannon, Electromagnetism on ice: classical and quantum theories of proton disorder in hexagonal water ice, arXiv:1504.04158v1 [cond-mat.str-el] (2015). [Back, 2]
  2. T. Hiemstra, Formation, stability, and solubility of metal oxide nanoparticles: Surface entropy, enthalpy, and free energy of ferrihydrite, Geochimica Cosmochimica Acta, 158 (2015) 179-198. [Back, 2]
  3. J. L. Finney, A. Hallbrucker, I. Kohl, A. K. Soper and D. T. Bowron, Structures of high and low density amorphous ice by neutron diffraction, Physical Review Letters 88 (2002) 225503c
  4. (a) B. J. Murray, T. L. Malkin and C. G. Salzmann, The crystal structure of ice under mesospheric conditions, Journal of Atmospheric and Solar-Terrestrial Physics, 127 (2015) 78-82;(b) B. J. Murray, C. G. Salzmann, A. J. Heymsfield, S. Dobbie, R. R. Neely III and C. J. Cox, Trigonal ice crystals in Earth’s atmosphere, Bulletin of the American Meteorological Society, Sept. (2015) 1519-1531 [Back, 2]
  5. T. Takenouchi, Behavior of hydrogen nanobubbles in alkaline electrolyzed water and its rinse effect for sulfate ion remained on nickel-plated surface, Journal of Applied Electrochemistry, 40 (2010) 849-854; Z. Wu, H. Chen, Y. Dong, H. Mao, J. Sun, S. Chen, V, S.J. Craig and J. Hu, Cleaning using nanobubbles: Defouling by electrochemical generation of bubbles, Journal of Colloids and Interface Science ence,328 (2008) 10-14. [Back]
  6. K. Sato, Recent patents on micro- and nano-bubble applications and potential application of a swirl-type generator, Recent Patents in Mechanical Engineering, 4 (2011) 202-211. [Back]
  7. F. Y. Ushikubo, T. Furukawa, R. Nakagawa, M. Enari, Y. Makino, Y. Kawagoe, T. Shiina and S. Oshita, Evidence of the existence and the stability of nano-bubbles in water, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 361 (2010) 31-37. [Back]
  8. A. Agarwal, W. J. Ng and Y. Liu, Principle and applications of microbubble and nanobubble technology for water treatment, Chemosphere, 84 (2011) 1175-1180. [Back]
  9. M Kashiwa, T. Fujita, H. Yamazaki and T. Fushiki, Introduction of sansho-pepper flavor to water by using nano-bubbles generator and its application to the field of food manufacturing, The Japanese Society for Multiphase Flow lecture meeting 2012. [Back]
  10. E. Y. Lukianova-Hleb, X. Ren, R.R. Sawant, X. Wu, V.P. Torchilin and D.O. Lapotko, On-demand intracellular amplification of chemoradiation with cancer-specific plasmonic nanobubbles, Nature Medicine, 20 (2014) 778-784. [Back]
  11. S. Chen, Y. Itoh, T. Masuda, S.Shimizu, J. Zhao, J. Ma, S. Nakamura, K. Okuro, H. Noguchi, K. Uosaki, and T. Aida, Subnanoscale hydrophobic modulation of salt bridges in aqueous media, Science, 348 (2015) 555-559. [Back]
  12. G. Algara-Siller, O. Lehtinen, F. C. Wang, R. R. Nair, U. Kaiser, H. A. Wu, A. K. Geim and I. V. Grigorieva, Square ice in graphene nanocapillaries, Nature, 519 (2015) 443-445; arxiv.org/abs/1412.7498; but see W. Zhou, K. Yin, C. Wang, Y. Zhang, T. Xu2, A. Borisevich, L. Sun, J. C. Idrobo, M. F. Chisholm, S. T. Pantelides, R. F. Klie and A. R. Lupini, Algara-Siller et al. reply, Nature, 528 (2015) E2; F. C. Wang, H. A. Wu and A. K. Geim, Wang et al. reply, Nature, 528 (2015) E2; J. Chen, A. Zen, J. G. Brandenburg, D. Alfé and A. Michaelides, Evidence for stable square ice from quantum Monte Carlo, Physical Review B, 94 (2016) 220102(R). [Back]
  13. Z. G. Li, S. Xiong, L. K. Chin, K. Ando, J. B. Zhang and A. Q. Liu, Water's tensile strength measured using an optofluidic chip, Lab on a Chip, 15 (2015) 2158-2161. [Back]
  14. A. Mukhopadhyay, W. T. S. Cole and R. J. Saykally, The water dimer I: Experimental characterization, Chemical Physics Letters, 633 (2015) 13-26; A. Mukhopadhyay, S. S. Xantheas and R. J. Saykally, The water dimer II: Theoretical investigations, Chemical Physics Letters, 700 (2018) 163-175 [Back]
  15. X. Xu and W. A. Goddard, III, Bonding properties of the water dimer: A comparative study of density functional
    theories, Journal of Physical Chemistry A 108 (2004) 2305-2313. [Back]
  16. P. G. Hill and R. D. MacMillan, Saturation states of heavy water, Journal of Physical Chemistry Reference Data, 9 (1980) 735-749. [Back]
  17. J. N. Butler, Carbon dioxide equilibria and their applications (CRC Press, 1991) ISBN 9780873716246. [Back]
  18. T. Kimura, N. Ozaki, T. Sano, T. Okuchi, T. Sano, K. Shimizu, K. Miyanishi, T. Terai, T. Kakeshita, Y. Sakawa and R. Kodama, P-ρ-T measurements of H2O up to 260 GPa under laser-driven shock loading, Journal of Chemical Physics,142 (2015) 164504. [Back]
  19. C. Chen, C. Huang, I. Waluyo, T. Weiss, L. G. M. Pettersson and A. Nilsson, Long-range ion–water and ion–ion interactions in aqueous solutions, Physical Chemistry Chemical Physics, 17 (2015) 8427-8430. [Back]
  20. I. Waluyo, C. Huang, D. Nordlund, U. Bergmann, T. M. Weiss, L. G. M. Pettersson and A. Nilsson, The structure of water in the hydration shell of cations from x-ray Raman and small angle x-ray scattering measurements, Journal of Chemical Physics,134 (2011) 064513. [Back]
  21. D. C. Chang, C. F. Hazlewood, B. L. Nichols and H. E. Rorschach, Spin echo studies on cellular water, Nature, 235 (1972) 170-171. [Back]
  22. A. Nicolaides, T. Soulimane and C. Varotsis, Detection of functional hydrogen-bonded water molecules with protonated/deprotonated key carboxyl side chains in the respiratory enzyme ba3-oxidoreductase, Physical Chemistry Chemical Physics, 17 (2015) 8113-8119. [Back]
  23. P. Attard, Direct measurement of the surface tension of nanobubbles, arXiv:1505.02217v1 [cond-mat.soft] 9 May 2015. [Back]
  24. G. A. P. de Oliveira and J. L. Silva, A hypothesis to reconcile the physical and chemical unfolding of proteins, Proceedings of the National Academy of Sciences, Published online (2015) E2775–E2784. [Back, 2]
  25. M. Zientara, D. Jakubczyk, K. Kolwas and M. Kolwas, Temperature dependence of the evaporation coefficient of water in air and nitrogen under atmospheric pressure: Study in water droplet, Journal of Physical Chemistry A 112 (2008) 5152-5158. [Back] [Back to Top to top of page]
  26. W. Eames, N. J. Marr and H. Sabir, The evaporation coefficient of water: a review, International Journal of Heat and Mass Transfer, 40 (1997) 2963-2973. [Back]
  27. J. D. Smith, C. D. Cappa, W. S. Drisdell, R. C. Cohen and R. J. Saykally, Raman thermometry measurements of free evaporation from liquid water droplets, Journal of the American Chemical Society, 128 (2006) 12892-12898. [Back]
  28. B. Gundlach, Yu.V. Skorov and J. Blum, Outgassing of icy bodies in the Solar System – I. The sublimation of hexagonal water ice through dust layers, Icarus, 213 (2011) 710-719. [Back]
  29. T. Guo, J. Hu, S. Mao and Z. Zhang, Evaluation of the pressure-volume-temperature (PVT) data of water from experiments and molecular simulations since 1990, Physics of the Earth and Planetary Interiors, 245 (2015) 88-102. [Back]
  30. G. Liger-belair, F. Sternenberg, S. Brunner, B. Robillard and C. Cilindre, Bubble dynamics in various commercial sparkling bottled waters, Journal of Food Engineering, 63 (2015) 60-70. [Back]
  31. P. Tomza and M. A. Czarnecki, Microheterogeneity in binary mixtures of propyl alcohols with water: NIR spectroscopic, two-dimensional correlation and multivariate curve resolution study, Journal of Molecular Liquids, 209 (2015) 115-120. [Back]
  32. R. K. Lam, A. H. England, J. W. Smith, A. M. Rizzuto, O. Shih, D. Prendergast and R. J. Saykally, The hydration structure of dissolved carbon dioxide from X-ray absorption spectroscopy, Chemical Physics Letters, 633 (2015) 214-217. [Back]
  33. V. P. Sokhan, A. P. Jones, F. S. Cipcigan, J. Crain and G. J. Martyna, Signature properties of water: Their molecular electronic origins, Proceedings of the National Academy of Sciences, 112 (2015) 6341-6346. [Back]
  34. F. S. Cipcigan, V. P. Sokhan, A. P. Jones, J. Crain and G. J. Martyna, Hydrogen bonding and molecular orientation at the liquid–vapour interface of water, Physical Chemistry Chemical Physics, 17 (2015) 8660-8669. [Back, 2]
  35. C. Calero, J. Martí and E. Guàrdia, 1H Nuclear spin relaxation of liquid water from molecular dynamics simulations, Journal of Physical Chemistry B 119 ( 2015) 1966-1973. [Back]
  36. T. Young, R. Abel, B. Kim, B. J. Berne, and R. A. Friesner, Motifs for molecular recognition exploiting hydrophobic enclosure in protein-ligand. Proceedings of the National Academy of Sciences, 104 (2007) 808-813. [Back]
  37. L. Bezacier, B. Journaux, J.-P. Perrillat, H. Cardon, M. Hanfland and I. Daniel, Equations of state of ice VI and ice VII at high pressure and high temperature, Journal of Chemical Physics, 141 (2014) 104505. [Back, 2, 3]
  38. F. Mallamace, C. Corsaro, D. Mallamace, S. Vasi, C. Vasi, H. E. Stanley and S.-H. Chen, Some thermodynamical aspects of protein hydration water, Journal of Chemical Physics,142 (2015) 215103. [Back]
  39. M. Welborn, J. Chen, L.-P. Wang and T. Voorhis. Why many semiempirical molecular orbital theories fail for liquid water and how to fix them, Journal of Computational Chemistry, 36 (2015) 934-939. [Back]
  40. C. Vega, Water: one molecule, two surfaces, one mistake, Molecular Physics, 113 (2015) 1145-1163; arXiv:1505. 08021v1 [cond-mat.soft]. [Back]
  41. C. Zhang and Gi. Galli, Dipolar correlations in liquid water, Journal of Chemical Physics, 141 (2014) 084504. [Back]
  42. S. Mao, Z. Duan, J. Hu, Z. Zhang and L. Shi, Extension of the IAPWS-95 formulation and an improved calculation approach for saturated properties, Physics of the Earth and Planetary Interiors, 185 (2011) 53-60. [Back]
  43. P. R. Smirnov, O. V. Grechin and I. L. Kritskii, Structure of the solvation spheres of ions in aqueous solutions of LuCl3 according to X-ray diffraction data, Russ. Journal of Physical Chemistry A 89 (2015) 630-633; first published in Zhurnal Fizicheskoi Khimii, 89 (2015). 644-647. [Back]
  44. S. Kaya, D. Schlesinger, S. Yamamoto, J. T. Newberg, H. Bluhm, H. Ogasawara, T. Kendelewicz, G. E. Brown Jr., L. G. M. Pettersson and A. Nilsson, Highly compressed two-dimensional form of water at ambient conditions, Science Reports, 3 (2013) 1074; doi:10.1038/srep01074. [Back]
  45. J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub–2-nanometer carbon nanotubes, Science, 312 (2006) 1034-1037; E. Secchi, S. Marbach, A. Niguès, D. Stein, A. Siria and L. Bocquet L. Massive radius-dependent flow slippage in carbon nanotubes, Nature, 537 (2016) 210-213; A. Michaelides, Slippery when narrow, Nature, 537 (2016) 171-172. [Back]
  46. M. Avena, P. Marracino, M. Liberti, F. Apollonio and N. J. English, Communication: Influence of nanosecond-pulsed electric fields on water and its subsequent relaxation: Dipolar effects and debunking memory, J. Chemical Physics, 142 (2015) 141101. [Back]
  47. L.-J. Zhang, J. Wang, Y. Luo, H.-P. Fang and J. Hu, A novel water layer structure inside nanobubbles at room temperature, Nuclear Science and Techniques, 25 (2014) 060503. [Back]
  48. M. Seidl, A. Fayter, J. N. Stern, G. Zifferer and T. Loerting, Shrinking water’s no man’s land by lifting its low-temperature boundary, Physical Review, B 91 (2015) 144201. [Back]
  49. V. Fuentes-Landete, C. Mitterdorfer, P. H. Handle, G. N. Ruiz, J. Bernard, A. Bogdan, M. Seidl, K. Amann-Winkel, J. Stern, S. Fuhrmann and T. Loerting, Crystalline and amorphous ices, In, Proceedings of the International School of Physics “Enrico Fermi” Course 187 “ Water: Fundamentals as the Basis for Understanding the Environment and Promoting Technology”, Ed P. G. Debenedetti, M. A. Ricci and F. Bruni, (IOS, Amsterdam; SIF, Bologna, 2015) DOI: 10.3254/978-1-61499-507-4-173. [Back, 2]
  50. S. A. Bagherzadeh, S. Alavi, J. Ripmeester and P. Englezos, Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth, Journal of Chemical Physics, 142 (2015) 214701; T. Uchida, H. Miyoshi, R. Sugibuchi, A. Suzuta, K. Yamazaki, K. Gohara, Contribution of ultra-fine bubbles to promoting effect on propane hydrate formation, Fronteirs in Chemistry, 8 (2020) 480. DOI: 10.3389/fchem.2020.00480. [Back] [Back to Top to top of page]
  51. J. Zhao, C. Wang, M. Yang, W. Liu, K. Xu, Y. Liu and Y. Song, Existence of a memory effect between hydrates with different structures (I, II, and H), J. Natural Gas Science and Engineering, 26 (2015) 330-335. [Back]
  52. J.-P. Gattuso, A. Magnan, R. Billé, W. W. L. Cheung, E. L. Howes, F. Joos, D. Allemand, L. Bopp, S. R. Cooley, C. M. Eakin, O. Hoegh-Guldberg, R. P. Kelly, H.-O. Pörtner, A. D. Rogers, J. M. Baxter, D. Laffoley, D. Osborn, A. Rankovic, J. Rochette, U. R. Sumaila, S. Treyer and C. Turley, Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios, Science, 349 (2015) 45; DOI: 10.1126/science.aac4722. [Back]
  53. K. W. Köster, V. Fuentes-Landete, A. Raidt, M. Seidl, C. Gainaru, T. Loerting and R. Böhmer, Dynamics enhanced by HCl doping triggers full Pauling entropy release at the ice XII–XIV transition, Nature, Communications, 6 (2015) 7349; K. W. Köster, V. Fuentes-Landete, A. Raidt, M. Seidl, C. Gainaru, T. Loerting and R. Böhmer, Author Correction: Dynamics enhanced by HCl doping triggers full Pauling entropy release at the ice XII–XIV transition, Nature, Communications, 9 (2018) 16189; V. Fuentes-Landete, K. W. Köster, R. Böhmer and T. Loerting, Thermodynamic and kinetic isotope effects on the order–disorder transition of ice XIV to ice XII, Physical Chemistry Chemical Physics, 20 (2018) 21607. [Back]
  54. F. Franks and J. E. Desnoyers, Alcohol-water mixtures revisited, In: Water Science, Reviews (No. 1) Ed, F. Franks, (Cambridge University Press, 1989) pp. 171-232; M. J. Bezbaruah, B. Ahmed, I. Ali and M. Upadhyaya , Hydrogen bonding interaction and structural change in some aliphatic alcohol-water complexes: A quantum mechanical MP4 study, Asian Journal of Chemistry, 32 (2020) 1581-1588. [Back]
  55. I. A. Sedov, B. N. Solomonov, Gibbs free energy of hydrogen bonding of aliphatic alcohols with liquid water at 298 K, Fluid Phase Equilibria 315 (2012) 16-20. [Back]
  56. R. Feistel, J. W. Lovell-Smith and O. Hellmuth, Virial approximation of the TEOS-10 equation for the fugacity of water in humid air,Journal of Thermophysical Properties and Thermophysics and Its Applications, 36 (2015) 44-68; R. Feistel, J. W. Lovell-Smith and O. Hellmuth, Erratum to: Virial approximation of the TEOS-10 equation for the fugacity of water in humid air, Journal of Thermophysical Properties and Thermophysics and Its Applications, 36 (2015) 204; IAPWS. [Back]
  57. J. R. Brooks, Water, bound and mobile, Science, 349 (2015) 138-139; S. P. Good, D. Noone and G. Bowen, Hydrologic connectivity constrains partitioning of global terrestrial water fluxes, Science, 349 (2015) 175-177. [ Back]
  58. F. Okada and K. Naya, Electrolysis for ozone water production, In Electrolysis, Ed. V. Linkov (2012) pp 243-272; ISBN 978-953-51-0793-4. [Back]
  59. Y.-H. Wang and Q.-Y. Chen, Anodic materials for electrocatalytic ozone generation, International Journal of Electrochemistry, 2013 (2013) 128248. [Back]
  60. T. Duignan, D. F. Parsons and B. W. Ninham, Hydronium and hydroxide at the Air-water interface with a continuum solvent model, Chemical Physics Letters, 635 (2015) submitted preprint published by authors. [Back]
  61. P. Ball and J. E. Hallsworth, Water structure and chaotropicity: their uses, abuses and biological implications, Physical Chemistry Chemical Physics, 17 (2015) 8297-8305. [Back]
  62. S. K. Natarajan, T. Morawietz and J. Behler, Representing the potential-energy surface of protonated water clusters by high-dimensional neural network potentials, Physical Chemistry Chemical Physics, 17 (2015) 8356-8371. [Back]
  63. P. W. Snyder, M. R. Lockett, D. T. Moustakas and G. M. Whitesides, Is it the shape of the cavity, or the shape of the water in the cavity? European Physcs Journal - Special Topics 223 (2014) 853-889. [Back, 2]
  64. P. Morell, S.M. Fiszman, P. Varela and I. Hernando, Hydrocolloids for enhancing satiety: Relating oral digestion to rheology, structure and sensory perception, Food Hydrocolloids 41 (2014) 343-353. [Back]
  65. C. Viebke, S. Al-Assaf and G. O. Phillips, Food hydrocolloids and health claims, Bioactive Carbohydrates and Dietary Fibre, 4 (2014) 101-114; J. Milanii and A. Golkar, Health aspects of novel hydrocolloids: Rheology and functions, In,  Emerging Natural Hydrocolloids: Rheology and Functions, ed. S. M. A. Razavi, John Wiley & Sons, (2019) pp 601-622. [Back]
  66. L. Han, S. Galier and H. Roux-de Balmann, Ion hydration number and electro-osmosis during electrodialysis of mixed salt solution, Desalination 373 (2015) 38-46. [Back]
  67. S. A.Khalid, A. M. Musa, A. M. Saeed, E. A. Abugroun, E. O. Sid Ahmed, M. B. Ghalib, E. I. Elnima, S. Y. Alkarib, T. M. Abdelsalam, A. Abdelgader, G. O. Phillips, A. O. Phillips, Manipulating dietary fibre: Gum Arabic making friends of the colon and the kidney, Bioactive Carbohydrates and Dietary Fibre, 3 (2014) 71-76. [Back]
  68. L. Lopez-Torrez, M. Nigen, P. Williams, T. Doco and C. Sanchez, Acacia senegal vs. Acacia seyal gums - Part 1: Composition and structure of hyperbranched plant exudates, Food Hydrocolloids 51 (2015) 41-53. [Back]
  69. M. Martínez, O. Beltrán, F. Rincón, G. L. de Pinto and J. M. Igartuburu, New structural features of Acacia tortuosa gum exudate, Food Chemistry, 182 (2015) 105-110. [Back]
  70. J. Dandurand, V. Samouillan, C. Lacabanne, A. Pepe and B. Bochicchio, Water structure and elastin-like peptide aggregation A differential calorimetric approach, Journal of Thermal Analysis and Calorimetry, 120 (2015) 419-426. [Back]
  71. J. J. Shephard and C. G. Salzmann, The complex kinetics of the ice VI to ice XV hydrogen ordering phase transition, Chemical Physics Letters, 637 (2015) 63-66. [Back]
  72. R. Renou, A. Szymczyk, G. Maurin, P. Malfreyt and A. Ghoufi, Superpermittivity of nanoconfined water, Journal of Chemical Physics,142 (2015)184706. [Back]
  73. L. E. Bove,1, R. Gaal, Z. Raza, A.-A. Ludl, S. Klotz, A. M. Saitta, A. F. Goncharov and P. Gillet, Effect of salt on the H-bond symmetrization in ice, Proceedings of the National Academy of Sciences, 112 (2015) 8216-8220. [Back]
  74. S. Zubedat, Y. Freed, Y.Eshed, A. Cymerblit-Sabba, Ami Ritter, M. Nachmani, R. Harush, S. Aga-Mizrachi and A. Avital, Plant-derived nanoparticle treatment with cocc 30c ameliorates attention and motor abilities in sleep-deprived rat, Neurosci. 253 (2013) 1-8. [Back]
  75. P. S. Chikramane, D. Kalita, A. K. Suresh, S. G. Kane and J. R. Bellare, Why extreme dilutions reach non-zero asymptotes: A nanoparticulate hypothesis based on froth flotation, Langmuir, 28 (2012) 15864-15875. [Back, 2] [Back to Top to top of page]
  76. T. Iitaka, H. Fukui, Z. Li, N. Hiraoka and T. Irifune, Pressure-induced dissociation of water molecules in ice VII.
    Science Reports, 5 (2015) 12551; DOI: 10.1038/srep12551. [Back]
  77. A. P. Sommer, A. Caron and H.-J. Fecht, Tuning nanoscopic water layers on hydrophobic and hydrophilic surfaces with laser light, Langmuir, 24 (2008) 635-636. [Back]
  78. A. P. Sommer, M. Haddad and H.-J. Fecht, Light effect on water viscosity: implication for ATP biosynthesis
    Science Reports, 5 (2015) 12029; DOI: 10.1038/srep12029. [Back]
  79. K. Shiraga, T. Suzuki, N. Kondo, T. Tajima, M. Nakamura, H. Togo, A. Hirata, K. Ajito and Y. Ogawa, Broadband dielectric spectroscopy of glucose aqueous solution: Analysis of the hydration state and the hydrogen bond network, Journal of Chemical Physics, 142 (2015) 234504. [Back]
  80. I.-M. Chou, A. Sharma, R. C. Burruss, J. Shu, H. Mao, R. J. Hemley, A. F. Goncharov, L. A. Stern and S. H. Kirby, Transformations in methane hydrates, Proceedings of the National Academy of Sciences, 97 (2000) 13484-13487; J. Shu, X. Chen, I.-M. Chou, W. Yang, J. Hu, R. J. Hemley, H.-k. Mao, Structural stability of methane hydrate at high pressures Geoscience Frontiers, 2 (2011) 93-100. [Back]
  81. E. Arunan and D Mani, Dynamics of the chemical bond: inter- and intra-molecular hydrogen bond. Faraday Discussions, 177 (2015) 51-64. [Back]
  82. E. Duboué-Dijon and D. Laage, Characterization of the local structure in lLiquid water by various order parameters, Journal of Physical Chemistry B 119 (2015) 8406-8418. [Back]
  83. S. Sirsi and M. Borden, Microbubble compositions, properties and biomedical applications, Bubble Science, Engineering and Technology, 1 (2009) 3-17. [Back]
  84. S. Liang and P. G. Kusalik Communication: Structural interconversions between principal clathrate hydrate structures, Journal of Chemical Physics,143 (2015) 011102. [Back]
  85. L. Parkinson, R. Sedev, D. Fornasiero and J. Ralston, The terminal rise velocity of 10–100 μm diameter bubbles in water, Journal of Colloid and Interface Science, 322 (2008) 168-172. [Back]
  86. S. M. Walke and V. S. Sathe, Experimental study on comparison of rising velocity of bubbles and light weight particles in the bubble column, International Journal of Chem. Eng. Appl. 3 (2012) 25-30. [Back]
  87. Y. Zhang, S. Takizawa and J. Lohwacharin, Spontaneous particle separation and salt rejection by hydrophilic membranes, WATER 7 (2015) 1-18. [Back]
  88. (a) M. Bass, A. Berman, A. Singh, O. Konovalov and V. Freger, Surface structure of Nafion in vapor and liquid
    Journal of Physical Chemistry B, 114 (2010) 3784-3790; (b) N. F. Bunkin, V. S. Gorelik, V. A. Kozlov, A. V. Shkirin and N. V. Suyazov, Colloidal crystal formation at the “Nafion−Water” interface, Journal of Physical Chemistry B, 118 (2014) 3372-3377; (c) G. Danilov, Protonated water in the nafion-water interfacial area; (d) N. F. Bunkin, A. V. Shkirin, V. A. Kozlov, B. W. Ninham, E. V. Uspenskaya and S. V. Gudkov, Near-surface structure of Nafion in deuterated water, Journal of Chemical Physics, 149 (2018) 164901. [Back]
  89. A. J. Mork and G. H. Pollack, New observations at the air-water interface, J. Undergrad. Research Bioeng. (2008-2010) 105-113, U. Washington. [Back]
  90. E. A. Engel, B. Monserrat and R.J. Needs, Anharmonic nuclear motion and the relative stability of hexagonal and cubic ice, arXiv:1508.02969v1 [cond-mat.mtrl-sci] 12 Aug 2015. [Back]
  91. F. Yen and T. Gao, Dielectric anomaly in ice near 20 K: Evidence of macroscopic quantum phenomena, Journal of Physical Chemistry Letters, 6 (2015) 2822-2825; http://arxiv.org/ftp/arxiv/papers/1508/1508.00215. [Back]
  92. K. M. Garcez and A. Antonelli, Polyamorphism in tetrahedral substances: Similarities between silicon and ice, Journal of Chemical Physics, 143 (2015):034501. [Back]
  93. L. Carter, The importance of maintaining good hydration in older people, Nursing in Practice 23 July (2015). [Back]
  94. D. F. S. Petri, Xanthan gum: A versatile biopolymer for biomedical and technological applications, Journal of Applied Polymer Science, (2015) 42035. [Back]
  95. D. B. Newell, F. Cabiati, J. Fischer, K. Fujii, S. G. Karshenboim, H. S. Margolis, E. de Mirandés, P. J. Mohr, F. Nez, K. Pachucki, T. J. Quinn, B. N. Taylor, M. Wang, B. M. Wood and Z. Zhang, The CODATA 2017 values of h , e , k, and NA for the revision of the SI, Metrologia, 55 (2018) L13- L16; R. Marquardt, J. Meija, Z. Mester, M. Towns, R. Weir, R. Davis and J. Stohner, Definition of the mole (IUPAC Recommendation 2017), Pure and Applied Chemistry, 90 (2018) 175-180. [Back]
  96. P. K. Weissenborn and R. J. Pugh, Surface tension of aqueous solutions of electrolytes: Relationship with ion hydration, oxygen solubility, and bubble coalescence, Journal of Colloid and Interface Science, 184 (1996) 550-563. [Back]
  97. R. I. Slavchov and J. K. Novev, Surface tension of concentrated electrolyte solutions, Journal of Colloid and Interface Science, 387 (2012) 234-243; P.Leroy and A. Lassin, Comment on “Surface tension of concentrated electrolyte solutions” (R.I. Slavchov, J.K. Novev, Journal of Colloid and Interface Science, 387 (2012) 234) Journal of Colloid and Interface Science, 423 (2014) 166-167; R. I. Slavchov and J. K. Novev, Comment on “Surface tension of concentrated electrolyte solutions” (R. I. Slavchov, J. K. Novev, Journal of Colloid and Interface Science, 387 (2012) 234) Journal of Colloid and Interface Science, 423 (2014)168-169. [Back]
  98. V. P. Sokhan, A. Jones, F. S. Cipcigan, J. Crain and G. J. Martyna, Molecular-scale remnants of the liquid-gas transition in supercritical polar fluids, Physical Review Letters 115 (2015) 117801. [Back]
  99. J. M. Douillard, Experimental approach of the relation between surface tension and interfacial thickness of simple liquids, J. Colloid and Interface Science, 337 (2009) 307-310. [Back]
  100. B. D. Lopes, V. L. Lessa, B. M. Silva, M. A. D. C. Filho, E. Schnitzler and L. G. Lacerda, Xanthan gum: properties, production conditions, quality and economic perspective, Journal of Food and Nutrition Research, 54 (2015) 185-194. [Back] [Back to Top to top of page]

 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2015 and last updated by Martin Chaplin on 15 September, 2021


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License