Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Water Structure and Science, References 2101 - 2200


  1. C. del Val, L. Bondar and A.-N. Bondar, Coupling between inter-helical hydrogen bonding and water dynamics in a proton transporter, Journal of Structural. Biology, 186 (2014) 95-111. [Back]
  2. J. W. Bye, S. Meliga, D. Ferachou, G. Cinque, J. A. Zeitler and R. J. Falconer Analysis of the hydration water around bovine serum albumin using terahertz coherent synchrotron radiation, Journal of Physical Chemistry A, 118 (2014) 83-88; O. Sushko, R. Dubrovka and R. S. Donnan, Sub-terahertz spectroscopy reveals that proteins influence the properties of water at greater distances than previously detected, Journal of Chemical Physics,142 (2015) 055101; O. Sushko, R. Dubrovka and R. S. Donnan, Erratum: “Sub-terahertz spectroscopy reveals that proteins influence the properties of water at greater distances than previously detected” [Journal of Chemical Physics,142, 055101 (2015)], Journal of Chemical Physics,142 (2015) 079901. [Back]
  3. C. J. Van Oss, R. F. Giese, R. Wentzek, J. Norris and E. M. Chuvilin, Surface tension parameters of ice obtained from contact angle data and from positive and negative particle adhesion to advancing freezing fronts, Journal of Adhesion Science ence and Technolology, 6 (1992) 503-516. [Back]
  4. R. M. Espinosa-Marzal, G. Fontani, F. B. Reusch, M. Roba, N. D. Spencer and R. Crockett, Sugars communicate through water: Oriented glycans induce water structuring, Biophysics Journal, 104 (2013) 2686-2694. [Back, 2]
  5. B. I. Kim, R. D. Boehm and J. R. Bonander, Direct observation of self-assembled chain-like water structures in a nanoscopic water meniscus, Journal of Chemical Physics,139 (2013) 054701. [Back]
  6. G. Carmignani, S. Sitkiewitz and J. W. Webley, Recovery of retrograde soluble solute for forward osmosis water treatment, U. S. Patent Appl. (2012) 20120267308. [Back]
  7. Z. Pavelek, Comparison of the methods used for studying the equilibrium of the lyate ions in water—methanol mixture, Chem. Papers 42 (1988) 299-304. [Back]
  8. J. R. T. Seddon, D. Lohse, W A. Ducker and V S. J. Craig, A deliberation on nanobubbles at surfaces and in bulk, ChemPhysChem 13 (2012) 2179-2187; P. Attard, Thermodynamic stability of nanobubbles arxiv:1503.04365v1 [physics.chem-ph] (2015). [Back]
  9. D. Sette and F. Wanderlingh, Nucleation by cosmic rays in ultrasonic cavitation, Physical Review, 125 (1962) 409-417. [Back]
  10. S.Wi, J. Spano and W. A. Ducker, Hindered rotation of water near C60, Journal of Physical Chemistry C, 114 (2010) 14986-14991. [Back]
  11. A. M. Tokmachev, A. L. Tchougréeff and R. Dronskowski, Hydrogen-bond networks in water clusters (H2O)20: an exhaustive quantum-chemical analysis. ChemPhysChem 11 ( 2010) 384-388. [Back]
  12. E. H. Hardy, A. Zygar, M. D. Zeidler, M. Holz and F. D. Sacher, Isotope effect on the translational and rotational motion in liquid water and ammonia, Journal of Chemical Physics,114 (2001) 3174-3181. [Back, 2]
  13. E. Rozners, Determination of nucleic acid hydration using osmotic stress, Current Protocols in Nucleic Acid Chemistry, (2010) Unit–7.14. [Back]
  14. C. J. Pickard, M. Martinez-Canales and R. J. Needs, Decomposition and terapascal phases of water ice, Physical Review Letters 110 (2013) 245701. [Back]
  15. Z. Cao. and J. U. Bowie, An energetic scale for equilibrium H/D fractionation factors illuminates hydrogen bond free energies in proteins. Protein Science, 23 (2014) 566-575. [Back]
  16. P. Atkins and J. de Paula, Atkins' Physical Chemistry, 7th Ed. (OUP, Oxford, 2002). [Back, 2]
  17. Y. Levin and A. P dos Santos, Ions at hydrophobic interfaces, Journal of Physics: Condensed Matter, 26 (2014) 203101. [Back]
  18. A. A. Volkov, N. V. Anisimov, V. N. Nikiforov, Yu. A. Pirogov and A. S. Prokhorov, Search for an NMR Signal from spin isomers of water in H2O/D2O mixture, Biophysics 59 (2014) 49-51; Biofizika, 59 (2014) 61-63. [Back]
  19. J. Chiu, F. W. Starr and N. Giovambattista, Heating-induced glass-glass and glass-liquid transformations in computer simulations of water, Journal of Chemical Physics, 140 (2014) 114504. [Back, 2]
  20. U. Bergmann, A. Di Cicco, P. Wernet, E. Principi, P. Glatzel and A. Nilsson, Nearest-neighbor oxygen distances in liquid water and ice observed by x-ray Raman based extended x-ray absorption fine structure, Journal of Chemical Physics, 127 (2007) 174504. [Back]
  21. Yu. I. Prylutskyy, V. I. Petrenko, O. I. Ivankov, O. A. Kyzyma, L. A. Bulavin, O. O. Litsis, M. P. Evstigneev, V. V. Cherepanov, A. G. Naumovets and U. Ritter, On the origin of C60 fullerene solubility in aqueous solution, Langmuir, 30 (2014) 3967-3970. [Back]
  22. D. P. Voronin, A. S. Buchelnikov, V. V. Kostjukov, S. V. Khrapatiy, D. Wyrzykowski, J. Piosik, Yu. I. Prylutskyy, U. Ritter and M. P. Evstigneev, Evidence of entropically driven C60 fullerene aggregation in aqueous solution, Journal of Chemical Physics,140 (2014) 104909. [Back]
  23. C. Barras, No more primal soup: Creating life without water, New Scientist 2965 (2014) 36-39. [Back]
  24. T. Scheike, W. Böhlmann, P. Esquinazi, J. Barzola-Quiquia, A. Ballestar and A. Setzer, Can doping graphite trigger room temperature superconductivity? Evidence for granular high-temperature superconductivity in water-treated graphite powder, Advances in Materials, 24 (2012) 5826-5831. [Back]
  25. K. E. Otto, Z. Xue, P. Zielke and M. A. Suhm, The Raman spectrum of isolated water clusters, Physical Chemistry Chemical Physics, 16 (2014) 9849-9858. [Back] [Back to Top to top of page]
  26. H. Kadobayashi, H. Hirai, T. Matsuoka, Y. Ohishi and Y. Yamamoto, A possible existence of phase change of deuterated ice VII at about 11 GPa by X-ray and Raman studies, Journal of Phys.: Conf. Series 500 (2014) 182017; H. Hirai, H. Kadobayashi, T. Matsuoka, Y. Ohishi and Y. Yamamoto, High pressure X-ray diffraction and Raman spectroscopic studies of the phase change of D2O ice VII at approximately 11 GPa, High Pressu re Research 34 (2014) 289-296. [Back]
  27. J. Russo and H. Tanaka, Understanding water’s anomalies with locally favoured structures, Nature, Comm. 5 (2014) 3556, arXiv:1308.4231v1 [cond-mat.soft] 20 Aug 2013. [Back]
  28. N. M. Levinson and S. G. Boxer, A conserved water-mediated hydrogen bond network defines bosutinib’s kinase selectivity, Nature, Chem. Biol. 10 (2014) 127-132. [Back]
  29. V. Holten, D. T. Limmer, V. Molinero and M. A. Anisimov, Nature, of the anomalies in the supercooled liquid state of the mW model of water. Journal of Chemical Physics,138 (2013) 174501; http://arxiv.org/pdf/1302.5691v2 [physics.chem-ph] 1 Apr 2013. [Back]
  30. D. T. Limmer and D. Chandler, Theory of amorphous ices, Proceedings of the National Academy of Sciences, 111 (2014) 9413-9418; arXiv:1306.4728v4 [cond-mat.stat-mech] 21 Apr 2014; K. Binder, Simulations clarify when supercooled water freezes into glassy structures, Proceedings of the National Academy of Sciences, 111 (2014) 9374-9375. [Back]
  31. G. Cassone, P. V. Giaquinta, F. Saija and A. M. Saitta, Proton conduction in water ices under an electric field, Journal of Physical Chemistry B 118 (2014) 4419-4424; A.M. Saitta, F. Saija and P. V. Giaquinta, Ab initio molecular dynamics study of dissociation of water under an electric field, Physical Review Letters 108 (2012) 207801. [Back]
  32. T. P. Silverstein, The aqueous proton is hydrated by more than one water molecule: is the hydronium ion a useful conceit? Journal of Chemical Education, 91 (2014) 608-610. [Back, 2]
  33. A. I. Boldyrev and J. Simons, Ab initio study of geometrically metastable multiprotonated species: MHnk+, Journal of Chemical Physics,97 (1992) 4272-4281. [Back]
  34. C. A. Reed, Myths about the proton: the nature of H+ in condensed media. Accounts of Chemical Research, 46 (2013) 2567-2575. [Back, 2]
  35. E. S. Stoyanov, I. V. Stoyanova and C. A. Reed, The unique nature of H+ in water, Chemical Science, 2 (2011) 462-472. [Back]
  36. W. Kulig and N. Agmon, Both Zundel and Eigen isomers contribute to the IR spectrum of the gas-phase H9O4+ cluster, Journal of Physical Chemistry B 118 (2014) 278-286. [Back]
  37. A. Kumar, S. R. Gadre, N. Mohan and C. H. Suresh, Lone pairs: an electrostatic viewpoint, Journal of Physical Chemistry A 118 (2014) 526-532. [Back, 2]
  38. D. Lis, E. H. G. Backus, J. Hunger, S. H. Parekh and M. Bonn, Liquid flow along a solid surface reversibly alters interfacial chemistry, Science, 344 (2014) 1138-1142; G. A. Waychunas, Disrupting dissolving ions at surfaces with fluid flow, Science, 344 (2014) 1094-1095. [Back, 2]
  39. S. Enami and A. J. Colussi, Long-range specific ion-ion interactions in hydrogen-bonded liquid films, Journal of Chemical Physics,138 (2013) 184706; S. Enami and A. J. Colussi, Ion-specific long-range correlations on interfacial water driven by hydrogen bond fluctuations, Journal of Physical Chemistry B 118 (2014) 1861-1866. [Back]
  40. N. Galamba, Water tetrahedrons, hydrogen-bond dynamics, and the orientational mobility of water around hydrophobic solutes, Journal of Physical Chemistry B 118 (2014) 4169-4176; see also N. Galamba, Water’s structure around hydrophobic solutes and the iceberg model. Journal of Physical Chemistry B 117(2013) 2153-2159; G. Graziano, Comment on “Water’s structure around hydrophobic solutes and the iceberg model” Journal of Physical Chemistry B 118 (2014) 2598-2599; N. Galamba, Reply to “Water’s structure around hydrophobic solutes and the iceberg model’”, Journal of Physical Chemistry B 118 (2014) 2600-2603. [Back]
  41. L. Kong, C. Lee, S. H. Kim and G. R. Ziegler, Characterization of starch polymorphic structures using vibrational
    sum frequency generation spectroscopy, Journal of Physical Chemistry B 118 (2014) 1775-1783. [Back]
  42. J. Hrubý, V. Vinš, R. Mareš, J. Hykl and J. Kalová, Surface tension of supercooled water: No inflection point down to −25 °C, Journal of Physical Chemistry Letters, 5 (2014) 425-428; V. Vinš, J. Hošek, J. Hykl and J. Hrubý, Surface tension of supercooled water: Inflection point-free course down to 250 K confirmed using a horizontal capillary tube, Journal of Chemical Engineering Data, 62 (2017) 3823-3832. [Back]
  43. J. A. Sellberg, C. Huang, T. A. McQueen, N. D. Loh, H. Laksmono, D. Schlesinge, R. G. Sierra, D. Nordlund, C. Y. Hampton, D. Starodub, D. P. DePonte, M. Beye, C. Chen, A. V. Martin, A. Barty, K. T. Wikfeldt, T. M. Weiss, C. Caronna, J. Feldkamp, L. B. Skinner, M. M. Seibert, M. Messerschmidt, G. J.Williams, S. Boutet, L. G. M. Pettersson, M. J. Bogan and A. Nilsson, Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature, Nature, 510 (2014) 381-384. [Back, 2]
  44. (a) J. C. Palmer, F. Martelli, Y. Liu, R. Car, A. Z. Panagiotopoulos and P. G. Debenedetti, Metastable liquid-liquid transition in a molecular model of water, Nature, 510 (2014) 385-358; this is challenged by (b) D. Chandler, Metastability and no criticality, Nature, 531 (2016) E1–E2, doi:10.1038/nature16539; and (c) D. Chandler, Illusions of phase coexistence: Comments on 'Metastable liquid-liquid transition' by J. C. Palmer et al., Nature, 510, 385 (2014), arXiv:1407.6854v2 [cond-mat.stat-mech] 20 Aug 2014; and the challenge rebutted by (d) J. C. Palmer, F. Martelli, Y. Liu, R. Car, A. Z. Panagiotopoulos and P. G. Debenedetti, Palmer et al. reply, Nature, 531 (2016) E2-E3, doi:10.1038/nature16540; Finally, the Chandler work was mistaken as the result of significant temperature errors, (e) A.G. Smart, The war over supercooled water, Physics Today, 22 Aug 2018; (f) J. C. Palmer, A. Haji-Akbari, R. S. Singh, F. Martelli, R. Car, A. Z. Panagiotopoulos and P. G. Debenedetti, Comment on “The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water” [I and II: J. Chem. Phys. 135, 134503 (2011); J. Chem. Phys. 138, 214504 (2013)], The Journal of Chemical Physics, 148 (2018) 137101. [Back, 2]
  45. T. Bartels-Rausch, V. Bergeron, J. H. E. Cartwright, R. Escribano, J. L. Finney, H. Grothe, P. J. Gutirrez, J. Haapala, W. F. Kuhs, J. B. C. Pettersson, S. D. Price, C. I. Sainz-Daz, D. J. Stokes, G. Strazzulla, E. S. Thomson, H. Trinks, and N. Uras-Aytemiz, Ice structures, patterns, and processes: A view across the icefields, Review Mod. Phys. 84 (2012) 885-944. [Back]
  46. P. Geiger, C. Dellago, M. Macher, C. Franchini, G. Kresse, J. Bernard, J. N. Stern and T. Loerting, Proton ordering of cubic ice Ic: Spectroscopy and computer simulations, Journal of Physical Chemistry C 118 (2014) 10989-10997. [Back, 2]
  47. M. Soniat and S. W. Rick Charge transfer effects of ions at the liquid water/vapor interface, Journal of Chem.Phys. 140 (2014) 184703. [Back]
  48. J. M. Silla, R. A. Cormanich, R Rittner and M. P. Freitas, Does intramolecular hydrogen bond play a key role in the stereochemistry of α- and β-d-glucose?, Carbohydate Research, 396 (2014) 9-13. [Back]
  49. J. Russo, F. Romano and H. Tanaka, New metastable form of ice and its role in the homogeneous crystallization of water, Nature, Mat. 13 (2014) 733-739; B. Slater and D. Quigley, Zeroing in on ice, Nature, Mat. 13 (2014) 670-671; D. Quigley, D. Alfè, and B. Slater, Communication: On the stability of ice 0, ice i, and I h, Journal of Chemical Physics,141, (2014) 161102. [Back]
  50. A. K. Soper, Supercooled water: Continuous trends, Nature, Mat. 13 (2014) 671-673; A. Angell, Supercooled water: Two phases? Nature, Mat. 13 (2014) 673-675; Editorial comment, Debated waters, Nature, Mat. 13 (2014) 663. [Back] [Back to Top to top of page]
  51. A. Mandal, K. Ramasesha, L. De Marco and A. Tokmakoff, Collective vibrations of water-solvated hydroxide ions investigated with broadband 2DIR spectroscopy, Journal of Chem.Phys. 140 (2014) 204508. [Back]
  52. R. Shevchuk, N. Agmon and F. Rao, Network analysis of proton transfer in liquid water, Journal of Chemical Physics,140 (2014) 244502. [Back]
  53. C. P. Herrero and R. Raḿırez, Configurational entropy of hydrogen-disordered ice polymorphs, Journal of Chemical Physics,140 (2014) 234502; arXiv:1406.5929v1 [physics.chem-ph] 23 Jun 2014. [Back, 2, 3, 4, 5, 6]
  54. Y. Liu and L. Ojamäe, Fingerprints in IR OH vibrational spectra of H2O clusters from different H-bond conformations by means of quantum-chemical computations, Journal of Molecular Modeling, 20 (2014) 2281. [Back]
  55. X. Xiao-Min, C. Lan, Z. Wen-Long, L. Long-Fei, Y. Yue-Bin, P. Zhi-Yong and Z. Jin-Xiu, Imaginary part of the surface tension of water, Chinese Physics Letters, 31 (2014) 076801. [Back, 2]
  56. D. A. Horke, Y.-P. Chang, K. Długołecki and J. Küpper, Separating para and ortho water,Angewandte Chemie International Edition, 53 (2014) 11965-11968; arXiv:1407.2056v1 [physics.chem-ph] 8 Jul 2014. [Back]
  57. N. Kitadai, T, Sawai, R. Tonoue, S. Nakashima, M. Katsura and K. Fukushi, Effects of ions on the OH stretching band of water as revealed by ATR-IR spectroscopy, Journal of Solution Chemistry, 43 (2014) 1055-1077. [Back, 2]
  58. C.-W. Liu, F. Wang, L. Yang, X.-Z. Li, W.-J. Zheng and Y. Q. Gao, Stable salt–water cluster structures reflect the delicate competition between ion–water and water–water interactions, Journal of Physical Chemistry B 118 (2014) 743-751; R.-Z. Li, C.-W. Liu, Y. Q. Gao, H. Jiang, H.-G. Xu and W.-J. Zheng, Microsolvation of LiI and CsI in water: Anion photoelectron spectroscopy and ab initio calculations, Journal of the American Chemical Society, 135 (2013) 5190-5199. [Back]
  59. C. Vega and J. L. F. Abascal, Simulating water with rigid nonpolarizable models: a general perspective, Physical Chemistry Chemical Physics, 13 (2011) 19663-19688. [Back]
  60. C. M. Davis Jr and T. A. Litovitz, Two‐state theory of the structure of water, Journal of Chemical Physics,42 (1965) 2563-2576. [Back]
  61. K. Arakawa and K. Sasaki, The structure theory of water. I. Two state theory, Bulletin of the Chemical Society of Japan, 42 (1969) 303-308. [Back]
  62. T. T. Duignan, D. F. Parsons and B. W. Ninham, Collins’s rule, Hofmeister effects and ionic dispersion interactions, Chemical Physics Letters, 608 (2014) 55-59. [Back]
  63. K, Mochizuki, K. Himotoa and M. Matsumoto, Diversity of transition pathways in the course of crystallization into ice VII, Physical Chemistry Chemical Physics, 16 (2014) 16419-16425. [Back]
  64. A. Fernández, Chemical functionality of interfacial water enveloping nanoscale structural defects in proteins, Journal of Chemical Physics, 140 (2014) 221102. [Back]
  65. T. S. Vlasenko, Yu. F. Zabashta, and V. M. Sysoev, Supramolecular structure of aqueous solutions of glucose according to dynamic light scattering data, Russian Journal of Physical Chemistry A 88 (2014) 1361-1363; Zhurnal Fizicheskoi Khimii, 88 (2014) 1180-1182. [Back]
  66. V. Elia, G. Ausanio, A. De Ninno, R. Germano, E. Napoli and M. Niccoli, Experimental evidences of stable water nanostructures at standard pressure and temperature obtained by iterative filtration, WATER 5 (2014) 121-130; V. Elia, T. A. Yinnon, R. Oliva, E. Napoli, R. Germano, F. Bobba and A. Amoresano, Chiral micron-sized H2O aggregates in water: Circular dichroism of supramolecular H2O architectures created by perturbing pure water, WATER, 8 (2017) 1-29; V. Elia, T. A. Yinnon, R. Oliva, E. Napoli, R. Germano, F. Bobba and A. Amoresano, DNA and the chiral water superstructure. Journal of Molecular Liquids, 248 (2017) 1028-1029; V. Elia, R. Oliva, E. Napoli, R. Germano, G. Pinto, L. Lista, M. Niccoli, D. Toso, G. Vitiello, M. Trifuoggi, A. Giarra and T. A. Yinnon, Experimental study of physicochemical changes in water by iterative contact with hydrophilic polymers: A comparison between Cellulose and Nafion, Journal of Molecular Liquids, 268 (2018) 598-609. [Back]
  67. A. K. Soper, The radial distribution functions of water as derived from radiation total scattering experiments: is there anything we can say for sure? ISRN Physical Chemistry 2013 (2013) 279463, http://dx.doi.org/10.1155/ 2013/279463. [Back]
  68. S. Izadi, R. Anandakrishnan and A. V. Onufriev, Building water models, A different approach, Journal of Physical Chemistry Lett 5 (2014) 3863-3871; arXiv:1408.1679v1 [physics.chem-ph] 7 Aug 2014; Y. Xiong, P. S. Shabane, and A. V. Onufriev, Melting points of OPC and OPC3 water models, ACS Omega, 5 (2020) 25087-25094. [Back]
  69. I. N. Huszár, Z. Mártonfalvi, A. J. Laki, K. Iván and M. Kellermayer, Exclusion-zone dynamics explored with microfluidics and optical tweezers, Entropy 16 (2014) 4322-4337. [Back]
  70. I. Waluyo, D. Nordlund, U. Bergmann, D. Schlesinger, L. G. M. Pettersson and A. Nilsson, A different view of structure-making and structure-breaking in alkali halide aqueous solutions through x-ray absorption spectroscopy, Journal of Chemical Physics,140 (2014) 244506. [Back, 2]
  71. V. G. Artemov, A. A. Volkov, Water and ice dielectric spectra scaling at 0 °C, Ferroelectrics 466 (2014) 158-165, DOI: 10.1080/00150193.2014.895216; arXiv:1308.1229; V. G. Artemov, A. A. Volkov, A. V. Pronin and A. A. Volkov, Electrical properties of water: a new insight, Biophysics 59 (2014) 520-523; Biofizika 59 (2014) 636-640; A.V. Klyuev, I.A. Ryzhkin, M.I. Ryzhkin, Generalized dielectric permittivity of ice, JETP Letters, 100 (2014) 604-608; Pis’ma v Zhurnal Eksperimental’noi. Teoretich. Fiz. 100 (2014) 683-687; A. A. Volkov, V. G. Artemov and A. V. Pronin, A radically new suggestion about the electrodynamics of water: Can the pH index and the Debye relaxation be of a common origin? Europhysics Letters, 106 (2014) 46004; V. G. Artemov, E. Uykur, S. Roh, A. V. Pronin, H. Ouerdane and M. Dressel, Excess protons revealed in the infrared spectrum of liquid water, arXiv:1910.07578v1 [cond-mat.mtrl-sci] 16 Oct 2019. [Back, 2, 3]
  72. N. H. de Leeuw, C. R. A. Catlow, H. E. King, A. Putnis, K. Muralidharan, P. Deymier, M. Stimpfl and M. J. Drake , Where on Earth has our water come from? Chemical Communications, 46 (2010) 8923-8925. [Back]
  73. C. M. O’D. Alexander, R. Bowden, M. L. Fogel, K. T. Howard, C. D. K. Herd and L. R. Nittler, The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets, Science, 337 (2012) 721-723. [Back]
  74. UNICEF and World Health Organization, Progress on drinking water and sanitation 2012 UPDATE (2012). [Back]
  75. Pacific Institute, The World’s Water 8 (2014); The water content of things. [Back] [Back to Top to top of page]
  76. L. Mehta, Water and human development, World Development 59 (2014) 59-69. [Back]
  77. N. Ghaffour, T. M. Missimer and G. L. Amy, Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability, Desalination 309 (2013) 197-207; S. Shaaban and H. Yahya, Detailed analysis of reverse osmosis systems in hot climate conditions, Desalination, 423 (2017) 41-51. [Back]
  78. L. N. Plummer and E. Busenberg, The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90 °C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O, Geochim. Cosmochim. Acta 46 (1982)1011-1040. [Back]
  79. M. H. Sharqawy, J. H. Lienhard and S. M. Zubai, Thermophysical properties of seawater: a review of existing correlations and data, Desalination and Water Treatment 16 (2010) 354-380. [Back]
  80. K.-H. Liu, Y. Zhang, J.-J. Lee, C.-C. Chen, Y.-Q. Yeh, S.-H. Chen and C.-Y. Mou, Density and anomalous thermal expansion of deeply cooled water confined in mesoporous silica investigated by synchrotron X-ray diffraction, Journal of Chemical Physics,139 (2013) 064502. [Back]
  81. Z. Wang, K.-H. Liu, L. Harriger, J. B. Leão and S.-H. Chen, Evidence of the existence of the high-density and low-density phases in deeply-cooled confined heavy water under high pressures Journal of Chemical Physics,141 (2014) 014501. [Back]
  82. M. M. Reddy, L. N. Plummer and E. Busenberg, Crystal growth of calcite from calcium bicarbonate solutions at constant PCO2 and 25 °C: a test of a calcite dissolution mode, Geochim. Cosmochim. Acta 45 (1981)1281-1289. [Back]
  83. Y. I. Cho, C. Fan, B.-G. Choi, Theory of electronic anti-fouling technology to control precipitation fouling in heat exchangers, International Commun. Heat Mass Transfer 24 (1997) 757-770. [Back]
  84. C. Y. Tai, M.-C. Chang andS.-W. Yeh, Synergetic effects of temperature and magnetic field on the aragonite and calcite growth, Chemical Engineering Science, 55 (2011) 1246-1253. [Back]
  85. A. Stirling and I. Pápai, H2CO3 forms via HCO3 in water, Journal of Physical Chemistry B, 114 (2010) 16854-16859. [Back]
  86. M. Shahid and R. M. Pashley, The use of air bubbles to desalinate seawater without boiling, Aqua Incognita: why ice floats on water and Galileo 400 years on, Ed. P. Lo Nostro and B. W. Ninham, ISBN: 9781925138214 (Connor Court, Ballarat, 2014) pp 350-366; M. Taseidifar, M. Shahid and R. M. Pashley, A study of the bubble column evaporator method for improved thermal desalination, Desalination, 432 (2018) 97-103. [Back, 2]
  87. X. Zhang, H. Lhuissier, C, Sun and D. Lohse, Surface nanobubbles nucleate microdroplets, Physical Review Letters 112 (2014) 144503. [Back]
  88. R. J. Cooper, S. Heiles, M. J. DiTucci and E. R. Williams, Hydration of guanidinium: second shell formation at small cluster size, Journal of Physical Chemistry 118 (2014) 5657-5666; S. Heiles, R. J. Cooper, M. J. DiTucci and E. R. Williams, Hydration of guanidinium depends on its local environment, Chemical Science, 6 (2015) 3420. [Back]
  89. L. G. M. Pettersson and A. Nilsson, The structure of water; from ambient to deeply supercooled, J. Non-Crystalline Solids, 407 (2015) 399-417; this paper is somewhat challenged by G. P. Johari and J. Teixeira, Thermodynamic analysis of the two-liquid model for anomalies of water, HDL−LDL fluctuations, and liquid−liquid transition, Journal of Physical Chemistry B 119 (2015) 14210-14220. [Back, 2]
  90. M. D. Baer, D. J. Tobias and C. J. Mundy, Investigation of interfacial and bulk dissociation of HBr, HCl, and HNO3 using density functional theory-based molecular dynamics simulations, Journal of Physical Chemistry C (2014) Article ASAP DOI: 10.1021/jp5062896. [Back, 2]
  91. A. T. Ayoub, J. Tuszynski and M. Klobukowski, Estimating hydrogen bond energies: comparison of methods, Theoretical Chemistry Accounts, 133 (2014) 1520; R. F. W. Bader, A quantum theory of molecular structure and its applications, Chemical Reviews, 91 (1991) 893-928. [Back]
  92. T. Sadhukhan, I.A. Latif and S. N. Datta, Solvation of CO2 in water: Effect of RuBP on CO2 concentration in bundle sheath of C4 plants, Journal of Physical Chemistry B 118 (2014) 8782-8791. [Back]
  93. M. J. Shultz, P. J. Bisson and A. Brumberg, Best face forward: crystal-face competition at the ice–water interface, Journal of Physical Chemistry B 118 (2014) 7972-7980. [Back]
  94. Y. Koga, P. Westh, K. Yoshida, A. Inaba and Y. Nakazawa, Gradual crossover in molecular organization of stable liquid H2O at moderately high pressure and temperature, AIP Advances 4 (2014) 097116. [Back, 2]
  95. A. Shalit, F. Perakis and P. Hamm, Two-dimensional infrared spectroscopy of isotope-diluted low density amorphous ice, Journal of Physical Chemistry B 117 (2013) 15512-15518. [Back]
  96. M. Odelius, Information content in O[1s] K-edge X-ray emission spectroscopy of liquid water, Journal of Physical Chemistry A.113 (2009) 8176-8181; Z. Yin, I. Rajkovic, K. Kubicek, W. Quevedo, A. Pietzsch, P. Wernet, A. Föhlisch and S. Techert, Probing the Hofmeister effect with ultrafast core−hole spectroscopy, Journal of Physical Chemistry B 118 (2014) 9398-9403. [Back]
  97. J. Werner, E. Wernersson, V. Ekholm, N. Ottosson, G. Ohrwall, J. Heyda, I. Persson, J. Söderström, P. Jungwirth and O. Björneholm, Surface behavior of hydrated guanidinium and ammonium ions: a comparative study by photoelectron spectroscopy and molecular dynamics, Journal of Physical Chemistry B. 118 (2014) 7119-7127. [Back]
  98. I. V. Stiopkin, C. Weeraman, P. A. Pieniazek, F. Y. Shalhout, J. L. Skinner and A. V. Benderskii, Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy, Nature, 474 (2011) 192-195; P. Jungwirth, Water's wafer-thin surface, Nature, 474 (2011) 168-169. [Back]
  99. A. Kubíčková, T. Křížek, P. Coufal, E. Wernersson, J. Heyda and P. Jungwirth, Guanidinium cations pair with positively charged arginine side chains in water, Journal of Physical Chemistry Letters, 2 (2011) 1387-1389. [Back]
  100. K. A. Dill, K. Ghosh and J D. Schmit, Physical limits of cells and proteomes, Proceedings of the National Academy of Sciences of the United States of America, 108 (2011) 17876-17882. [Back] [Back to Top to top of page]



Home | Site Index | Site Map | Search | LSBU | Top


This page was established in 2014 and last updated by Martin Chaplin on 15 September, 2021

Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License