Water site headerMasthead Island, Great Barrier Reef Print-me keygo to Water Visitor Book contributions
Go to my page Water Structure and Science

Water Structure and Science, References 1901 - 2000

 

  1. J. Pokorný, Electrodynamic activity of healthy and cancer cells, Journal of Phys.: Conf. Ser. 329 (2011) 012007; M. Plankar, I. Jerman and R. Krašovec, On the origin of cancer: Can we ignore coherence? Progress in Biophysics & Molecular Biology, 106 (2011) 380-390. [Back]
  2. N. Lavoine, I. Desloges, A. Dufresne and J. Bras, Microfibrillated cellulose – Its barrier properties and applications in cellulosic materials: A review, Carbohydrate Polymers 90 (2012) 735-764. [Back]
  3. F. Bruni, R. Mancinelli and M. A. Ricci, How safe is to safely enter in the water no-man's land? Journal of Molecular Liquids, 176 (2012) 39-43. [Back]
  4. V. I. Bhoi, S. Kumar and C. N. Murthy, The self-assembly and aqueous solubilization of [60]fullerene with disaccharides, Carbohydate Research, 359 (2012) 120-127. [Back]
  5. M. Liu, J. K. Beattie and A. Gray-Weale, The surface relaxation of water Journal of Physical Chemistry B 116 (2012) 8981-8988; P. Ball, Getting under water's skin, Chemistry World, Oct (2012) 28. [Back, 2]
  6. J. M. Andric, G. V. Janjic, D. B. Ninkovic and S. D. Zaric, The influence of water molecule coordination to a metal ion on water hydrogen bonds, Physical Chemistry Chemical Physics, 14 ( 2012) 10896-10898. [Back]
  7. F. Bonnet, E. M. Lepicard, L. Cathrin, C. Letellier, F. Constant, N. Hawili and G. Friedlander, French children start their school day with a hydration deficit, Ann Nutr Metab. 60 (2012) 257-263; R. Fadda, G. Rapinett, D. Grathwohl, M. Parisi, R. Fanari, C. M. Calò and J. Schmitt, Effects of drinking supplementary water at school on cognitive performance in children, Appetite 59 (2012) 730-737; J. H. Bottin, C. Morin, I. Guelinckx and E. T. Perrier, Hydration in children: What do we know and why does it matter? Annals of Nutrition & Metabolism, 74(suppl 3) (2019) 11-18. [Back]
  8. Z. Zhou,H. Zhao,and J. Han, Supercooling and crystallization of water under DC magnetic fields, CIESC J. 63 (2012) 1405-1408. [Back]
  9. H. Suzuki, Y. Matsuzaki, A. Muraoka and M. Tachikawa, Raman spectroscopy of optically levitated supercooled water droplet, Journal of Chemical Physics,136 (2012) 234508. [Back, 2]
  10. T. D. Noakes, Commentary: role of hydration in health and exercise, Brit. Med. J. 344 (2012) e4171. [Back]
  11. S. Shahriari, C. M. Neves, M. G. Freire and J. A.Coutinho, Role of the Hofmeister series in the formation of ionic-liquid-based aqueous biphasic systems. J Phys Chem B. 116 (2012) 7252-7258; K. A. Kurnia, M. G. Freire and J. A. P. Coutinho, Effect of polyvalent ions in the formation of ionic-liquid-based aqueous biphasic systems, Journal of Physical Chemistry B 118(2014) 297-308. [Back]
  12. Y. Marcus, The standard partial molar volumes of ions in solution. Part 5. Ionic volumes in water at 125-200 °C, Journal of Physical Chemistry B 116 (2012) 7232-7239; D. P. Fernandez, A. R.H. Goodwin, E. W. Lemmon, J. M. H. Levelt Senger and R. C. Williams, A formulation for the static permittivity of water and steam at temperatures from 238 K to 873 K at pressures up to 1200 MPa, including derivatives and Debye-Huckel coefficients, Journal of Physical Chemistry Reference Data, 26 (1997) 1125-1166. [Back, 2]
  13. L. B. Sagle, K. Cimatu, V. A. Litosh, Y. Liu, S. C. Flores, X. Chen, B. Yu and P. S. Cremer, Methyl groups of trimethylamine N-oxide orient away from hydrophobic interfaces Journal of the American Chemical Society, 133 (2011) 18707-18712. [Back]
  14. K. B. Rembert, J. Paterová, J. Heyda, C. Hilty, P. Jungwirth and P. S. Cremer, Molecular mechanisms of ion-specific effects on proteins, Journal of the American Chemical Society, 134 (2012) 10039-10046. [Back]
  15. S. J. Suresh, K. Kapoor, S. Talwar and A. Rastogi, Internal structure of water around cations, Journal of Molecular Liquids, 174 (2012) 135-142. [Back]
  16. K. G. Libbrecht, The physics of snow crystals, Rep. Prog. Phys. 68 (2005) 855-895; K. G. Libbrecht, An experimental apparatus for observing deterministic structure formation in plate-on-pedestal ice crystal growth, arXiv:1503.01019v1 [cond-mat.mtrl-sci] 3 Mar 2015. [Back]
  17. J. T. O’Brien and E. R. Williams, Effects of ions on hydrogen-bonding water networks in large aqueous nanodrops, Journal of the American Chemical Society, 134 (2012) 10228-10236. [Back]
  18. K. Mizuse and A. Fujii, Infrared spectroscopy of large protonated water clusters H+(H2O)20-50 cooled by inert gas attachment, Chemical Physics, 419 (2013) 2-7. [Back]
  19. A. S. Zatula, M. J. Ryding, P. U. Andersson and E. Uggerud, Proton mobility and stability ofwater clusters containing alkali metal ions, International Journal of Mass Spectrometry, 330-332 (2012) 191-199. [Back]
  20. L. R. Winther, J. Qvist and B. Halle, Hydration and mobility of trehalose in aqueous solution, Journal of Physical Chemistry B 116 (2012) 9196-9207; M. Heyden, G. Schwaab, and M. Havenith, Comment on “Hydration and mobility of trehalose in aqueous solution”, Journal of Physical Chemistry B 118 (2014) 10802-10805; B. Halle, Reply to “Comment on Hydration and mobility of trehalose in aqueous solution’”, Journal of Physical Chemistry B 118 (2014) 10806-10812. [Back]
  21. M. Balázovic and B.Tomácik,The Mpemba effect, Shechtman’s quasicrystals and student exploration activities, Phys. Educ. 47 (2012) 568-573. [Back]
  22. E. Thormann, On understanding of the Hofmeister effect: how addition of salt alters the stability of temperature responsive polymers in aqueous solutions, RSC Advances 2 (2012) 8297-8305. [Back]
  23. A. R. Imre, U. K. Deiters, T. Kraska and I. Tiselj, The pseudocritical regions for supercritical water, Nuclear Eng. Design 252 (2012) 179-183. [Back]
  24. K. Kobayashi and H. Yasuda, Phase transition of ice Ic to ice XI under electron beam irradiation, Chemical Physics Letters, 547 (2012) 9-12. [Back]
  25. Q. Sun, Raman spectroscopic study of the effects of dissolved NaCl on water structure, Vibrational Spectroscopy. 62 (2012) 110-114. [Back] [Back to Top to top of page]
  26. I. U. Vakarelski, N. A. Patankar, J. O. Marston, D. Y. C. Chan and S. T. Thoroddsen, Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces, Nature, 489 (2012) 274-277. [Back]
  27. C. A. Lozupone, J. I. Stombaugh, J. I. Gordon, J. K. Jansson and R. Knight, Diversity, stability and resilience of the human gut microbiota Nature, 489 (2012) 220-230. [Back]
  28. S.V. Goryainov, A model of phase transitions in double-well Morse potential: Application to hydrogen bond, Physica B 407 (2012) 4233-4237. [Back]
  29. C. L. Liu, G. W. Hu, Y. G. Ye and Q. G. Meng, Dry water: a prospective material for methane storage via clathrate hydrate form Advanced Materials Research, 399-401 (2011) 1473-1476. [Back]
  30. P. S. Salmon, J. W. E. Drewitt, D. A. J. Whittaker, A. Zeidler, K. Wezka, C. L. Bull, M. G. Tucker, M. C. Wilding, M. Guthrie and D. Marrocchelli, Density-driven structural transformations in network forming glasses: a high-pressure neutron diffraction study of GeO2 glass up to 17.5 GPa Journal of Physics: Condensed Matter, 24 (2012) 415102. [Back]
  31. C. C. Pradzynski, R. M. Forck, T. Zeuch, P. Slavíček and U. Buck, A fully size-resolved perspective on the crystallization of water clusters, Science, 337 (2012) 1529-1532. [Back]
  32. T. Shimoaka, T. Hasegawa, K. Ohno and Y. Katsumoto, Correlation between the local OH stretching vibration wavenumber and the hydrogen bonding pattern of water in a condensed phase: Quantum chemical approach to analyze the broad OH band, Journal of Molecular Structure, 1029 (2012) 209-216. [Back]
  33. M. Holz, S. R. Heil and A. Sacco, Temperature-dependent self-di†usion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements, Physical Chemistry Chemical Physics, 2 (2000) 4740-4742. [Back]
  34. N. S. Osborne, H. F. Stimson and D. C. Ginnings, Measurements of heat capacity and heat of vaporization of water in the range 0 degrees to 100 degrees C, Journal of Research of the National Bureau of Standards, 23 (1939) 197-260. [Back]
  35. R. C. Dougherty, Temperature and pressure dependence of hydrogen bond strength: A perturbation molecular orbital approach, Journal of Chemical Physics,109 (1998) 7372-7378. [Back, 2]
  36. D. Fraenkel, Electrolytic nature of aqueous sulfuric acid. 1. Activity, Journal of Physical Chemistry B, 116 (2012) 11662-11677. [Back]
  37. R. M. Pope and E. S. Fry, Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements, App. Optics 36 (1997) 8710-8723. [Back]
  38. W. B. Holzapfel, Effect of pressure and temperature on the conductivity and ionic dissociation of water up to 100 kbar and 1000 °C, Journal of Chemical Physics,50 (1969) 4424-4428;(b) L. G. Hepler and E. M. Woolley, Hydration effects and acid-base equilibria, In Ed. F. Franks, Water A Comprehensive treatise, Vol. 3 Aqueous solutions of simple electrolytes, (Plenum press. New York, 1973) pp 145-172. [Back]
  39. P. T. Kiss and A. Baranyai, Density maximum and polarizable models of water, Journal of Chemical Physics, 137 (2012) 084506. [Back]
  40. J. Roche, J. A. Caro, D. R. Norberto, P. Barthe, C. Roumestand, J. L. Schlessman, A. E. Garcia, B García-Moreno E., and C. A. Royer, Cavities determine the pressure unfolding of proteins, Proceedings of the National Academy of Sciences, 109 (2012) 6945-6950. [Back]
  41. B. C. Polander and B. A. Barry, A hydrogen-bonding network plays a catalytic role in photosynthetic oxygen evolution, Proceedings of the National Academy of Sciences, 109 (2012) 6112-6117. [Back]
  42. P. S. Chikramane, A. K. Suresh, J. R. Bellar and S. G. Kane, Extreme homeopathic dilutions retain starting materials: A nanoparticulate perspective, Homeopathy, 99 (2010) 231-242; P. S. Chikramane, D. Kalita, A. K. Suresh, S. G. Kane and J. R. Bellare, Why extreme dilutions reach non-zero asymptotes: A nanoparticulate hypothesis based on froth flotation, Langmuir, 28 (2012) 15864-15875. [Back]
  43. M. R. Frank, E. Aarestad, H. P. Scott and V. B. Prakapenka, A comparison of ice VII formed in the H2O, NaCl-H2O, and CH3OH-H2O systems: Implications for H2O-rich planets, Physics Earth Planetary Interiors 215 (2013) 12-20. [Back]
  44. J. G. Davis, K. P. Gierszal, P. Wang and D. Ben-Amotz, Water structural transformation at molecular hydrophobic interfaces, Nature, 491 (2012) 582585; H. J. Bakker, Water's response to the fear of water, Nature, 491 (2012) 533-535. [Back]
  45. G. Pallares, M. A. Gonzalez, J. L. F. Abascal, C. Valeriani and F. Caupin, Equation of state for water and its line of density maxima down to -120 MPa, Physical Chemistry Chemical Physics, 18 (2016) 5896-5900. [Back]
  46. Y. Marcus, Volumes of aqueous hydrogen and hydroxide ions at 0 to 200 °C, Journal of Chemical Physics, 137 (2012) 154501. [Back, 2, 3]
  47. S. Yamaguchi, A. Kundu, P. Sen and T. Tahara, Quantitative estimate of the water surface pH using heterodyne-detected electronic sum frequency generation, Journal of Chemical Physics,137 (2012) 151101. [Back]
  48. V. M. Shatalov, A. E. Filippov and I. V. Noga, Bubbles induced fluctuations of some properties of aqueous solutions, Biophysics 57 (2012) 421-427. [Back]
  49. S.-P. Nie, C. Wang, S. W. Cui, Q. Wang, M.-Y. Xie and G. O. Phillips, A further amendment to the classical core structure of gum arabic (Acacia senegal), Food Hydrocolloids 31 (2013) 42-48. [Back]
  50. P. Needham, Hydrogen bonding: Homing in on a tricky chemical concept, Studies in History and Philosophy of Science, 44 (2013) 51-65; M. Henry, The hydrogen bond, Inference: International Review of Science, 1(2) (2015). [Back, 2] [Back to Top to top of page]
  51. H. Mishra, S. Enami, R. J. Nielsen, L. A. Stewart, M. R. Hoffmann, W. A. Goddard III and A. J. Colussi, Brønsted basicity of the air–water interface, Proceedings of the National Academy of Sciences, 109 (2012) 18679-18683; A. J. Colussi and S. Enami, Comment on “Surface acidity of water probed by free energy Calculation for trimethylamine protonation” Journal of Physical Chemistry C 118 (2014) 2894; Y. Tabe, N. Kikkawa, H. Takahashi and A. Morita, Reply to “Comment on ‘Surface acidity of water probed by free energy Calculation for trimethylamine protonation’” Journal of Physical Chemistry C 118 (2014) 2895. [Back]
  52. P. T. Kiss, P. Bertsyk and A. Baranyai, Testing recent charge-on-spring type polarizable water models. I. Melting temperature and ice properties, Journal of Chemical Physics,137 (2012) 194102; P. T. Kiss and A. Baranyai, Testing the recent charge-on-spring type polarizable water models. II. Vapor-liquid equilibrium, Journal of Chemical Physics,137 (2012) 194103. [Back]
  53. K.Amann-Winkel, F. Löw, P. H. Handle, W. Knoll, J. Peters, B. Geil, F. Fujar and T. Loerting, Limits of metastability in amorphous ices: the neutron scattering Debye–Waller factor, Physical Chemistry Chemical Physics, 14 (2012) 16386-16391; F. Löw, K. Amann-Winkel, B. Geil, T. Loerting, C. Wittich and F. Fujara, Limits of metastability in amorphous ices: 2H-NMR relaxation, Physical Chemistry Chemical Physics, 15 (2013) 576-580. [Back]
  54. R. Demichelis, P. Raiteri, J. D. Gale, D. Quigley and D. Gebauer, Stable prenucleation mineral clusters are liquid-like ionic polymers, Nature, Commun. 2 (2011) 590. [Back]
  55. J. M. D. Coey, Magnetic water treatment – how might it work? Phil. Mag. 92 (2012) 3857-3865. [Back]
  56. M. Mella, Exploring unvisited regions to investigate solution properties: The backyard of H3O+ and its aggregates, Chemical Physics Letters, 555 (2013) 51-56. [Back]
  57. S. Perrard, Y. Couder, E. Fort and L. Limat, Leidenfrost levitated liquid tori, Europhysics Letters, 100 (2012) 54006. [Back]
  58. K. A. Rubinson and C. W. Meuse, Deep hydration: Poly(ethylene glycol) Mw 2000-8000 Da probed by vibrational spectrometry and small-angle neutron scattering and assignment of ΔG° to individual water layers, Polymer 54 (2013) 709-723. [Back]
  59. C. G. Ferrara, O. Chara and J. R. Grigera, Aggregation of nonpolar solutes in water at different pressures and temperatures: The role of hydrophobic interaction, Journal of Chemical Physics,137 (2012) 135104. [Back]
  60. L. Jaeken and V. V. Matveev, Coherent behavior and the bound state of water and K+ imply another model of bioenergetics: negative entropy instead of high-energy bonds, The Open Biochemistry Journal, 6 (2012) 139-159. [Back]
  61. V. V. Brazhkin, A. G. Lyapin, V. N. Ryzhov, K. Trachenko, Yu. D. Fomin and E. N. Tsiok, Where is the supercritical fluid on the phase diagram?, Physics - Uspekhi 55 (2012) 1061-1079; V. V. Brazhkin and K. Trachenko, What separates a liquid from a gas? Physics Today 65 (2012) 68-69; V. V. Brazhkin, Yu. D. Fomin, A. G. Lyapin, V. N. Ryzhov and K. Trachenko, Two liquid states of matter: A dynamic line on a phase diagram, Physical Review, E 85 (2012) 031203; Yu. D. Fomin, V. N. Ryzhov, E. N. Tsiok and V. V. Brazhkin, Dynamical crossover line in supercritical water. Science Reports, 5 (2015) 14234; T. J. Yoon, L. A. Patel, T. Ju, M. J. Vigil, A. T. Findikoglu,
    R. P. Currier and K. A. Maerzke, Thermodynamics, dynamics, and structure of supercritical water at extreme conditions, Physical Chemistry Chemical Physics, 22 (2020) 16051-16062. [ Back]
  62. V. E. Petrenko, D. L. Gurina, and M. L. Antipova, Structure of supercritical water: the concept of critical isotherm as a percolation threshold, Russian Journal of Physical Chemistry B, 6 (2012) 899-906; M. L. Antipova, D. L. Gurina, and V. E. Petrenko, Structure of hydrogen-bonded associates in supercritical water under low and high pressures, Russian Journal of Physical Chemistry A, 87 (2013) 449-453; C. J. Sahle, C. Sternemann, C. Schmidt, S. Lehtola, S. Jahn, L. Simonelli, S. Huotari, M. Hakala, T. Pylkkänen, A. Nyrow, K. Mende, M. Tolan, K. Hämäläinen and M. Wilke, Microscopic structure of water at elevated pressures and temperatures, Proceedings of the National Academy of Sciences, 110 (2013) 6301–6306; G. Galli and D. Pan., A closer look at supercritical water, Proceedings of the National Academy of Sciences, 110 (2013) 6250-6251. [Back]
  63. O. F. Nielsen, M. Bilde, and M. Frosch, Water activity, Spectroscopy 27 (2012) 565-569. [Back, 2]
  64. A. Mashaghi, P. Partovi-Azar, T. Jadidi, M. Anvari, S. P. Jand, N. Nafar, M. R. R. Tabar, P. Maass, H. J. Bakker and M. Bonn, Enhanced autoionization of water at phospholipid interfaces Journal of Physical Chemistry C, 117 (2013) 510-514. [Back]
  65. K. M. Lange and E. F. Aziz, The hydrogen bond of water from the perspective of soft X-ray spectroscopy, Chemistry, An Asian Journal, 8 (2013) 318-327. [Back]
  66. E. Ruckenstein, Nano dispersions of bubbles and oil drops in water, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 423 (2013) 112-114. [Back]
  67. J. T. O'Brien and E. R. Williams, Effects of ions on hydrogen-bonding water networks in large aqueous nanodrops  Journal of the American Chemical society, 134 (2012) 10228-10236. [Back]
  68. V. D. Prajapati, G. K. Jani, N. G. Moradiya, N. P. Randeria and B. J. Nagar, Locust bean gum: A versatile biopolymer, Carbohydrate Polymers, 94 (2013) 814-821. [Back]
  69. W. F. Kuhs and M. S. Lehmann, The structure of ice-Ih, Water Science, Reviews 2 (Cambridge University Press: 1986) pp. 1-66; W. F. Kuhs and M. S. Lehmann, The structure of ice-Ih by neutron diffraction, Journal of Physical Chemistry 87 (1983) 4312-4313. [Back]
  70. F. Mallamace, C. Corsaro and H. E. Stanley, A singular thermodynamically consistent temperature at the origin of the anomalous behavior of liquid water, Science Reports, (Nature) 2 (2012) 993. [Back, 2]
  71. L. B. Skinner, C. Huang, D. Schlesinger, L. G. M. Pettersson, A. Nilsson and C. J. Benmore, Benchmark oxygen oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q-range, Journal of Chemical Physics,138 (2013) 074506. [Back]
  72. T. F. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock and S. R. Manalis, Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature, 446 (2007) 1066-1069; H. Kobayashi, S. Maeda, M. Kashiwa and T. Fujita, Measurement and identification of ultrafine bubbles by resonant mass measurement method, International Conf. Optical Particle Characterization (OPC 2014), ed. N. Aya, N. Iki, T. Shimura and T. Shirai, Proc. of SPIE 9232 (2014) 92320S DOI: 10.1117/12.2064811. [Back, 2]
  73. J. H. Weijs and D. Lohse, Why surface nanobubbles live for hours, Physical Review Letters 110 (2013) 054501. [Back, 2]
  74. J. B. Cumming, Temperature dependence of light absorption by water, Nuclear Instrum. Meth. Phys. Research A, 713 (2013) 1-4; arXiv:1301.1984 [cond-mat.mtrl-sci]. [Back]
  75. N. Verdel, I. Jerma, R. Krasovec, P. Bukovec and M. Zupancic, Possible time-dependent effect of ions and hydrophilic surfaces on the electrical conductivity of aqueous solutions, International Journal of Molecular Sciences, 13 (2012) 4048-4068. [Back] [Back to Top to top of page]
  76. J. D. Cox, Phase relationships in the pyridine series. Part II. The miscibility of some pyridine homologues
    with deuterium oxide. Journal of the Chemical Society, (1952) 4606-4608; G. Jancsó, H2O-D2O solvent isotope effect on excess molar volumes of 3-methylpyridine solutions, Journal of Solution Chemistry, 35 (2006) 991-1005. [Back]
  77. (a) M. Yu. Tretyakov, E. A. Serov, M. A. Koshelev, V.V. Parshin and A. F. Krupnov, Water dimer rotationally resolved millimeter-wave spectrum observation at room temperature, Physical Review, Lett 110 (2013) 093001; (b) R. J. Saykally, Viewpoint on: M. Yu. Tretyakov, E. A. Serov, M. A. Koshelev, V.V. Parshin and A. F. Krupnov, Water dimer rotationally resolved millimeter-wave spectrum observation at room temperature, Physical Review, Lett 110 (2013) 093001, Physics 6 (2013) 22. [Back]
  78. M. Carmo, D. L. Fritz, J. Mergel and D. Stolten, A comprehensive review on PEM water electrolysis, International Journal of Hydrogen Energy, 38 (2013) 4901-4934. [Back]
  79. T. D. Kühne and R. Z. Khaliullin, Electronic signature of the instantaneous asymmetry in the first coordination shell of liquid water, Nature, Commun. 4 (2013) 1450 | DOI: 10.1038/ncomms2459. [Back]
  80. Q. Sun, Local statistical interpretation for water structure, Chemical Physics Letters, 568-569 (2013) 90-94; . Sun, Raman spectroscopic study of the effects of dissolved NaCl on water structure, Vibrational Spectroscopy, 62 (2012) 110-114. [Back, 2]
  81. Y. Marcus, Individual ionic surface tension increments in aqueous solutions Langmuir, 29 (2013) 2881-2888; Y. Marcus, Specific ion effects on the surface tension and surface potential of aqueous electrolytes, Current Opinion in Colloid & Interface Science, 23 (2016) 94-99. [Back, 2]
  82. F. Mallamace, C. Corsaro and H. E. Stanley, Possible relation of water structural relaxation to water anomalies, Proceedings of the National Academy of Sciences, 110 (2013) 4899-4904. [Back]
  83. J. W. Biddle, V. Holten, J. V. Sengers and M. A. Anisimov, Thermal conductivity of supercooled water, Physical Review, E 87 (2013) 042302; arXiv: 1302.6280. [Back]
  84. A. A. Volkov, V. G. Artemov and A. V. Pronin, Proton electrodynamics in liquid water, (2013) arXiv:1302.5048v1; V. G. Artemov, A. A. Volkov, N. N. Sysoev and A. A. Volkov, Autoionization of water: does it really occur? (2015) arxiv.org/abs/1508.00126; A. A. Volkov, V. G. Artemov, A. A. Volkov and N. N. Sysoev, Diffusion-oscillatory dynamics in liquid water on data of dielectric spectroscopy, (2016) arxiv.org/pdf/1606.06023v1; V. G. Artemov, A. A. Volkov, N. N. Sysoev, A. A. Volkov, On autoionization and pH of liquid water, Doklady Physics, 61 (2016) 1-4; A. A. Volkov, V. G. Artemov, A. A. Volkov, N. N. Sysoev, Possible mechanism of molecular motion in liquid water from dielectric spectroscopy data. Journal of Molecular Liquids, 248 (2017) 564-568; V. G. Artemov, E. Uykur, S. Roh, A. V. Pronin, H. Ouerdane and M. Dressel, Revealing excess protons in the infrared spectrum of liquid water, Scientific Reports, 10 (2020) 11320. [Back]
  85. D. J. Anick, Atypical water lattices and their possible relevance to the amorphous ices: A density functional study, AIP Advances 3 (2013) 042119. [Back]
  86. C.-W. Yang, Y.-H. Lu and I.-S. Hwang, Imaging surface nanobubbles at graphite–water interfaces with different atomic force microscopy modes, Journal of Physics: Condensed Matter, 25 (2013) 184010; W. Walczyk, P. M Schön and H. Schönherr, The effect of PeakForce tapping mode AFM imaging on the apparent shape of surface nanobubbles, Journal of Physics: Condensed Matter, 25 (2013) 184005. [Back]
  87. S. Wang, M. Liu and Y. Dong, Understanding the stability of surface nanobubbles, Journal of Physics: Condensed Matter, 25 (2013) 184007. [Back, 2]
  88. A. Maali and B. Bhushan, Nanobubbles and their role in slip and drag, Journal of Physics: Condensed Matter, 25 (2013) 184003. [Back]
  89. V. S. J. Craig, Very small bubbles at surfaces—the nanobubble puzzle, Soft Matter, 7 (2011) 40-48. [Back]
  90. F. Takeuchi, M. Hiratsuka, R. Ohmura, S. Alavi, A. K. Sum and K. Yasuoka, Water proton configurations in structures I, II, and H clathrate hydrate unit cells, Journal of Chemical Physics,138 (2013) 124504. [Back]
  91. S.-P. Nie, C. Wang, S. W. Cui, Q. Wang, M.-Y. Xie and G. O. Phillips, The core carbohydrate structure of Acacia seyal var. seyal (Gum arabic), Food Hydrocolloids 32 (2013) 221-227. [Back]
  92. H. Torii, Intermolecular electron density modulations in water and their effects on the far-infrared spectral profiles at 6 THz, Journal of Physical Chemistry B 115 (2011) 6636-6643. [Back]
  93. H. Torii, Extended nature of the molecular dipole of hydrogen-bonded water, Journal of Physical Chemistry A 117 (2013) 2044-2051. [Back, 2]
  94. H. Bian, J. Li, Q. Zhang, H. Chen, W. Zhuang, Y. Q. Gao and J. Zheng, Ion segregation in aqueous solutions, Journal of Physical Chemistry B, 116 (2012) 14426-14432. [Back]
  95. A. Fujii and K. Mizuse, Infrared spectroscopic studies on hydrogen-bonded water networks in gas phase clusters, International Review Physical Chemistry 32 (2013) 266-307. [Back]
  96. A. De Ninno, A. C. Castellano and E. Del Giudice, The supramolecular structure of liquid water and quantum coherent processes in biology, Journal of Phys.: Conf. Ser. 442 (2013) 012031. [Back]
  97. V. Tychinsky, The metabolic component of cellular refractivity and its importance for optical cytometry. Journal of Biophotonics 8-9 (2009) 494-504. [Back]
  98. S. E. Cross, Y-S. Jin, J. Rao and J. K. Gimzewski, Nanomechanical analysis of cells from cancer patientsx, Nature Nanotechnology, 2 (2007) 780-783. [Back]
  99. W. Yu, P. E. M. Lopes, B. Roux, and A.r D. MacKerell, Jr.Six-site polarizable model of water based on the classical Drude oscillator, Journal of Chemical Physics, 138 (2013) 034508. [Back]
  100. N. N. Smirnova, T. A. Bykova, K. Van Durme and B. Van Mele,Thermodynamic properties of deuterium oxide in the temperature range from 6 to 350 K, Journal of Chemical Thermodynamics, 38 (2006) 879-883. [Back] [Back to Top to top of page]

 

 

Home | Site Index | Site Map | Search | LSBU | Top

 

This page was established in 2012 and last updated by Martin Chaplin on 19 January, 2022


Creative Commons License
This work is licensed under a Creative Commons Attribution
-Noncommercial-No Derivative Works 2.0 UK: England & Wales License